This commit is contained in:
Christoph J. Scherr 2024-09-09 15:45:23 +02:00
parent 4f8d02528b
commit 985b0a9e74
Signed by: cscherrNT
GPG Key ID: 8E2B45BC51A27EA7
4 changed files with 38 additions and 1 deletions

Binary file not shown.

View File

@ -199,4 +199,25 @@ $
&= e^(2x) dot (1/2 x - 1/4 + 1) \
&= 1/2 e^(2x) dot (x - 1/2 + 2) \
&= 1/2 e^(2x) dot (x + 3/2) checkmark
| $
$
+ $
u(x) &= x^2 => u'(x) = 2x; space
v(x) = ln(x) dot x - x #footnote([für Hochleitung $ln(x)$ siehe @ln-hochleitung])
=> v'(x) = ln(x) \
A &= integral x^2 dot ln(x) thin d x \
&= integral u(x) dot v'(x) thin d x \
&= [u(x) dot v(x)] - integral u'(x) dot v(x) thin d x \
&= [x^2 dot (ln(x) dot x - x)] - integral 2x dot (ln(x) dot x - x) thin d x \
&= [x^2 dot (ln(x) dot x - x)] - 2 dot integral x^2 dot (ln(x) - 1) thin d x \
&=> ??? \ \
u'(x) &= x^2 => u(x) = 3x^3 dot 1/3; space v(x) = ln(x) => v'(x) = 1/x \
A &= integral x^2 dot ln(x) thin d x \
&= integral u'(x) dot v(x) thin d x \
&= u(x) dot v(x) - integral u(x) dot v'(x) thin d x \
&= 1/3 x^3 dot ln(x) - integral 1/3 x^3 dot 1/x thin d x \
&= 1/3 x^3 dot ln(x) - integral 1/3 x^2 thin d x \
&= 1/3 x^3 dot ln(x) - 1/9 x^3 \
&= 1/3 x^3 (ln(x) - 1/9) checkmark
$

View File

@ -41,6 +41,15 @@
it
}
// count with symbols
//
// > The * character means that symbols should be used to count, in the
// > order of *, †, ‡, §, ¶, and ‖. If there are more than six items,
// > the number is represented using multiple symbols.
//
// See <https://typst.app/docs/reference/model/numbering/>
#set footnote(numbering: "*")
#set math.equation(numbering: n => {
let h1 = counter(heading).get().first()
numbering("(1.1)", h1, n)

View File

@ -11,8 +11,15 @@
}
@online{MatheNichtFreaks,
title = "Mathe für Nicht-Freaks: Teleskopsumme und Teleskop",
url = "
https://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_Teleskopsumme_und_Teleskopreihe
",
urldate = "2024-07-18",
}
@online{ln-hochleitung,
title = "Herleitung der Stammfunktion des natürlichen Logarithmus",
url = "https://matheguru.com/integralrechnung/herleitung-der-stammfunktion-des-naturlichen-logarithmus.html",
urldate = "2024-09-09",
}