yay me
This commit is contained in:
parent
02145437cd
commit
4f8d02528b
BIN
build/main.pdf
BIN
build/main.pdf
Binary file not shown.
|
@ -148,23 +148,23 @@ $
|
|||
Calculate the following integrals using substitution:
|
||||
|
||||
#set enum(numbering: "(a)")
|
||||
+ $ integral (2x+7)/(x^2+7x+3) d x $
|
||||
+ $ integral (cos(ln(x)))/(x) d x $
|
||||
+ $ integral (2x+7)/(x^2+7x+3) thin d x $
|
||||
+ $ integral (cos(ln(x)))/(x) thin d x $
|
||||
])
|
||||
|
||||
#set enum(numbering: "(a)")
|
||||
+ $
|
||||
A &= integral (2x+7)/(x^2+7x+3) d x \
|
||||
&= integral (a'(x))/(a(x)) d x \
|
||||
&= integral (a'(x))/(a(x)) d x \
|
||||
&= integral 1/(a(x)) dot a'(x) d x; wide d u = a'(x) d x \
|
||||
A &= integral (2x+7)/(x^2+7x+3) thin d x \
|
||||
&= integral (a'(x))/(a(x)) thin d x \
|
||||
&= integral (a'(x))/(a(x)) thin d x \
|
||||
&= integral 1/(a(x)) dot a'(x) thin d x; wide d u = a'(x) thin d x \
|
||||
&= integral 1/u d u \
|
||||
&= ln(u) = ln(x^2+7x+3) checkmark
|
||||
$
|
||||
+ $
|
||||
A &= integral (cos(ln(x)))/(x) d x \
|
||||
&= integral cos(ln(x)) dot 1/x d x \
|
||||
&= integral cos(u) dot u' d x \
|
||||
A &= integral (cos(ln(x)))/(x) thin d x \
|
||||
&= integral cos(ln(x)) dot 1/x thin d x \
|
||||
&= integral cos(u) dot u' thin d x \
|
||||
&= integral cos(u) dot d u \
|
||||
&= sin(u) \
|
||||
&= sin(ln(x)) \
|
||||
|
@ -180,16 +180,23 @@ $
|
|||
Calculate the following integrals using partial integration:
|
||||
|
||||
#set enum(numbering: "(a)")
|
||||
+ $ integral (x+2) dot e^(2x) d x $
|
||||
+ $ integral x^2 dot ln(x) d x $
|
||||
+ $ integral (x+2) dot e^(2x) thin d x $
|
||||
+ $ integral x^2 dot ln(x) thin d x $
|
||||
])
|
||||
|
||||
#set enum(numbering: "(a)")
|
||||
+ $
|
||||
A &= integral (x+2) dot e^(2x) d x \
|
||||
&= integral u(x) dot v'(x) d x \
|
||||
&= u(x) dot v(x) - integral u'(x) dot v(x) d x \
|
||||
&= (x+2) dot (e^(2x) dot 1/2x) - integral e^(2x) d x \
|
||||
&= (x+2) dot (e^(2x) dot 1/2x) - e^(2x) dot 1/2x \
|
||||
&= x dot (e^(2x) dot 1/2x) + e^(2x) dot 1/2x \
|
||||
$
|
||||
u(x) &= x => u'(x) = 1; space v(x) = e^(2x) dot 1/2 x => v'(x) = e^(2x) \
|
||||
A &= integral (x+2) dot e^(2x) thin d x \
|
||||
&= integral x dot e^(2x) thin d x + integral 2 dot e^(2x) thin d x wide \
|
||||
&= integral x dot e^(2x) thin d x + 2 dot integral e^(2x) thin d x \
|
||||
&= integral x dot e^(2x) thin d x + 2 dot 1/2 e^(2x) \
|
||||
&= integral x dot e^(2x) thin d x + e^(2x) \
|
||||
&= integral u(x) dot v'(x) thin d x + e^(2x) \
|
||||
&= [u(x) dot v(x)] - integral u'(x) dot v(x) thin d x + e^(2x) \
|
||||
&= x dot e^(2x) dot 1/2 - integral 1 dot e^(2x) dot 1/2 thin d x + e^(2x) \
|
||||
&= 1/2 x dot e^(2x) - e^(2x) 1/4 + e^(2x) \
|
||||
&= e^(2x) dot (1/2 x - 1/4 + 1) \
|
||||
&= 1/2 e^(2x) dot (x - 1/2 + 2) \
|
||||
&= 1/2 e^(2x) dot (x + 3/2) checkmark
|
||||
| $
|
||||
|
|
Loading…
Reference in New Issue