mathe doof
This commit is contained in:
parent
b52fe77f28
commit
4681ed7a2b
BIN
build/main.pdf
BIN
build/main.pdf
Binary file not shown.
|
@ -0,0 +1,53 @@
|
||||||
|
== Exercise Sheet 1 - Basics
|
||||||
|
|
||||||
|
=== Exercise 1 @Exercise[1, 1]
|
||||||
|
|
||||||
|
#block(
|
||||||
|
fill: luma(230),
|
||||||
|
inset: 8pt,
|
||||||
|
radius: 4pt,
|
||||||
|
[
|
||||||
|
Determine whether the following sequences converge. Calculate the limit in case of convergence.
|
||||||
|
|
||||||
|
#set enum(numbering: "(a)")
|
||||||
|
+ $ a_n = (2024 (1+n+n^2))/(n(n+2023)) $
|
||||||
|
+ $ a_n = sqrt(n^2+n dot b_1+b_2)-n; quad b_1,b_2 in RR $
|
||||||
|
+ $ a_n = (n^4-2)/(n^2+4) + (n^3(3-n^2))/(n^3+1) $
|
||||||
|
])
|
||||||
|
|
||||||
|
#set enum(numbering: "(a)")
|
||||||
|
+ $
|
||||||
|
a_n &= (2024 (1+n+n^2))/(n(n+2023)) \
|
||||||
|
&= ((2024 (1+n+n^2))/n^2)/(1+2023/n) \
|
||||||
|
&= (2024 (1/n^2+1/n+1/))/(1+2023/n) \
|
||||||
|
&= (2024/n^2+2024/n+2024)/(1+2023/n) \
|
||||||
|
|
||||||
|
=> lim_(n -> infinity) a_n &= lim_(n -> infinity) (2024/n^2+2024/n+2024)/(1+2023/n) \
|
||||||
|
&= lim_(n -> infinity) 2024/1 = 2024 checkmark \
|
||||||
|
$
|
||||||
|
|
||||||
|
+ $
|
||||||
|
a_n &= sqrt(n^2+n dot b_1+b_2)-n; quad b_1,b_2 in RR \
|
||||||
|
&= ((sqrt(n^2+n dot b_1+b_2)-n) (sqrt(n^2+n dot b_1+b_2)+n))/(sqrt(n^2+n dot b_1+b_2)+n) \
|
||||||
|
&= (n^2+n dot b_1+b_2 - n^2)/(sqrt(n^2+n dot b_1+b_2)+n) \
|
||||||
|
&= (n dot b_1+b_2)/(sqrt(n^2+n dot b_1+b_2)+n) \
|
||||||
|
&= (b_1+b_2/n)/((sqrt(n^2+n dot b_1+b_2)+n)/n) \
|
||||||
|
&= (b_1+b_2/n)/((sqrt(n^2+n dot b_1+b_2))/n+1) \
|
||||||
|
&= (b_1+b_2/n)/((sqrt(n^2+n dot b_1+b_2))/sqrt(n^2)+1) \
|
||||||
|
&= (b_1+b_2/n)/(sqrt(1+b_1/n+b_2/(n^2))+1) \
|
||||||
|
|
||||||
|
=> lim_(n -> infinity) a_n &= lim_(n -> infinity) (b_1+b_2/n)/sqrt(1+b_1/n+b_2/(n^2))+1 \
|
||||||
|
&= b_1/(sqrt(1) + 1) = b_1/2 checkmark
|
||||||
|
$
|
||||||
|
|
||||||
|
+ $
|
||||||
|
a_n &= (n^4-2)/(n^2+4) + (n^3(3-n^2)) / (n^3+1) \
|
||||||
|
&= ((n^4-2)(n^3+1) + (n^3(3-n^2))(n^2+4)) / ((n^2+4)(n^3+1)) \
|
||||||
|
&= (n^7+n^4-2n^3-2 + 3n^5+12n^3-n^7-4n^5) / ((n^2+4)(n^3+1)) \
|
||||||
|
&= (-n^5+n^4+10n^3-2) / (n^5+n^2+4n^3+4) \
|
||||||
|
&= (-1+1/n+10/(n^2)-2/(n^5)) / (1+1/(n^3)+4/(n^2)+4/(n^5)) \
|
||||||
|
|
||||||
|
=> lim_(n -> infinity) a_n
|
||||||
|
&= lim_(n -> infinity) (-1+1/n+10/(n^2)-2/(n^5)) / (1+1/(n^3)+4/(n^2)+4/(n^5)) \
|
||||||
|
&= lim_(n -> infinity) -1/1 = 1 checkmark
|
||||||
|
$
|
|
@ -0,0 +1,2 @@
|
||||||
|
|
||||||
|
#include "1.typ"
|
|
@ -330,7 +330,7 @@ $ <v1-partint>
|
||||||
|
|
||||||
An dieser Stelle stimmt die Lösung in @Vorlesung leider wieder nicht. Ich habe
|
An dieser Stelle stimmt die Lösung in @Vorlesung leider wieder nicht. Ich habe
|
||||||
das Ergebnis wie in <v1-partint> maschinell überprüfen lassen, und es war
|
das Ergebnis wie in <v1-partint> maschinell überprüfen lassen, und es war
|
||||||
korrekt. Lauf @Vorlesung wäre das Ergebnis:
|
korrekt. Laut @Vorlesung wäre das Ergebnis:
|
||||||
|
|
||||||
$ A = integral x sin(x) d x = x(-cos(x)) - integral sin(x) d x = cos(x)(1-x)
|
$ A = integral x sin(x) d x = x(-cos(x)) - integral sin(x) d x = cos(x)(1-x)
|
||||||
" "#emoji.crossmark $
|
" "#emoji.crossmark $
|
||||||
|
|
Loading…
Reference in New Issue