revsqrt stuff for PA2
This commit is contained in:
parent
89ff872ab7
commit
25d7f0d8b2
|
@ -26,6 +26,10 @@ path = "src/main.rs"
|
||||||
name = "revsqrt"
|
name = "revsqrt"
|
||||||
harness = false # allows Cucumber to print output instead of libtest
|
harness = false # allows Cucumber to print output instead of libtest
|
||||||
|
|
||||||
|
[[test]]
|
||||||
|
name = "revsqrt-demo"
|
||||||
|
harness = false # allows Cucumber to print output instead of libtest
|
||||||
|
|
||||||
[[test]]
|
[[test]]
|
||||||
name = "basic-revsqrt"
|
name = "basic-revsqrt"
|
||||||
harness = true
|
harness = true
|
||||||
|
|
|
@ -0,0 +1,33 @@
|
||||||
|
Feature: inverted square root calculation
|
||||||
|
|
||||||
|
Scenario: fast inverted sqrt is about the same as the regular inverted sqrt
|
||||||
|
Given a number
|
||||||
|
When we calculate the inverted square root of it using the fast inverted square root algorithm
|
||||||
|
Then the result is about the same as if we calculate it normally
|
||||||
|
|
||||||
|
Scenario: Can the fast inverted sqrt be calculated?
|
||||||
|
Given a number
|
||||||
|
When we calculate the inverted square root of it using the fast inverted square root algorithm
|
||||||
|
Then the result can be calculated
|
||||||
|
|
||||||
|
Scenario: Can the regular inverted sqrt be calculated?
|
||||||
|
Given a number
|
||||||
|
When we calculate the inverted square root of it normally
|
||||||
|
Then the result can be calculated
|
||||||
|
|
||||||
|
Scenario: Calculate regular inverted sqrt with specific numbers
|
||||||
|
Given the number n
|
||||||
|
| 1 |
|
||||||
|
| 1.1 |
|
||||||
|
| 100 |
|
||||||
|
| 1337 |
|
||||||
|
| 123.45678900 |
|
||||||
|
| 1337.1337 |
|
||||||
|
When we calculate the inverted square root of it normally
|
||||||
|
Then the result is m
|
||||||
|
| 1 |
|
||||||
|
| 0.9534625892455922 |
|
||||||
|
| 0.1 |
|
||||||
|
| 0.02734854943722097 |
|
||||||
|
| 0.0900000004095 |
|
||||||
|
| 0.027347182112297627 |
|
|
@ -0,0 +1,82 @@
|
||||||
|
use cucumber::{gherkin::Step, given, then, when, World};
|
||||||
|
|
||||||
|
/// stores the current information for each scenario
|
||||||
|
#[derive(Debug, Default, World)]
|
||||||
|
struct NumWorld {
|
||||||
|
numbers: Vec<(f32, f32)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// is n about the same as m?
|
||||||
|
///
|
||||||
|
/// This is actually not so easy! How do you measure *about same*ness?
|
||||||
|
/// Also, I don't think it is transitive, as 1 ≈ 1.1 ≈ 1.2 ≈ 1.3 ≈ ... ≈ 2 ≈ ... ≈ 3 ≈ ... ≈ infinity
|
||||||
|
#[inline]
|
||||||
|
fn about_same(n: f32, m: f32) -> bool {
|
||||||
|
(n - m).abs() <= calc_gate(n, m)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn calc_gate(n: f32, m: f32) -> f32 {
|
||||||
|
0.01 + ((n.abs().sqrt().min(m.abs().sqrt())).abs() / 10f32)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[given(regex = r"the number n")]
|
||||||
|
async fn give_specific_number(world: &mut NumWorld, step: &Step) {
|
||||||
|
if let Some(table) = step.table.as_ref() {
|
||||||
|
for row in table.rows.iter() {
|
||||||
|
let n = row[0].parse::<f32>().unwrap();
|
||||||
|
world.numbers.push((n, f32::NAN));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[given("a number")]
|
||||||
|
async fn give_rand_number(world: &mut NumWorld) {
|
||||||
|
world.numbers.push(rand::random());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[when("we calculate the inverted square root of it using the fast inverted square root algorithm")]
|
||||||
|
async fn calc_fast_inv_sqrt(world: &mut NumWorld) {
|
||||||
|
for pair in &mut world.numbers {
|
||||||
|
pair.1 = revsqrt::fast_inverse_sqrt(pair.0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[when("we calculate the inverted square root of it normally")]
|
||||||
|
async fn calc_reg_inv_sqrt(world: &mut NumWorld) {
|
||||||
|
for pair in &mut world.numbers {
|
||||||
|
pair.1 = revsqrt::regular_inverse_sqrt(pair.0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[then("the result can be calculated")]
|
||||||
|
async fn can_be_calculated(world: &mut NumWorld) {
|
||||||
|
for pair in &mut world.numbers {
|
||||||
|
assert!(!pair.0.is_nan());
|
||||||
|
assert!(!pair.1.is_nan());
|
||||||
|
assert!(pair.0.is_finite());
|
||||||
|
assert!(pair.1.is_finite());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[then("the result is about the same as if we calculate it normally")]
|
||||||
|
async fn comp_result_with_normal(world: &mut NumWorld) {
|
||||||
|
for pair in &mut world.numbers {
|
||||||
|
assert!(about_same(pair.1, revsqrt::regular_inverse_sqrt(pair.0)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[then(regex = r"the result is m")]
|
||||||
|
async fn result_is(world: &mut NumWorld, step: &Step) {
|
||||||
|
if let Some(table) = step.table.as_ref() {
|
||||||
|
for (row, i) in std::iter::zip(table.rows.iter(), 0..table.rows.len() - 1) {
|
||||||
|
let m = row[0].parse::<f32>().unwrap();
|
||||||
|
assert_eq!(world.numbers[i].1, m);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[tokio::main]
|
||||||
|
async fn main() {
|
||||||
|
NumWorld::run("tests/features/book/revsqrt-demo.feature").await;
|
||||||
|
}
|
Loading…
Reference in New Issue