83 lines
2.4 KiB
Rust
83 lines
2.4 KiB
Rust
|
use cucumber::{gherkin::Step, given, then, when, World};
|
||
|
|
||
|
/// stores the current information for each scenario
|
||
|
#[derive(Debug, Default, World)]
|
||
|
struct NumWorld {
|
||
|
numbers: Vec<(f32, f32)>,
|
||
|
}
|
||
|
|
||
|
/// is n about the same as m?
|
||
|
///
|
||
|
/// This is actually not so easy! How do you measure *about same*ness?
|
||
|
/// Also, I don't think it is transitive, as 1 ≈ 1.1 ≈ 1.2 ≈ 1.3 ≈ ... ≈ 2 ≈ ... ≈ 3 ≈ ... ≈ infinity
|
||
|
#[inline]
|
||
|
fn about_same(n: f32, m: f32) -> bool {
|
||
|
(n - m).abs() <= calc_gate(n, m)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn calc_gate(n: f32, m: f32) -> f32 {
|
||
|
0.01 + ((n.abs().sqrt().min(m.abs().sqrt())).abs() / 10f32)
|
||
|
}
|
||
|
|
||
|
#[given(regex = r"the number n")]
|
||
|
async fn give_specific_number(world: &mut NumWorld, step: &Step) {
|
||
|
if let Some(table) = step.table.as_ref() {
|
||
|
for row in table.rows.iter() {
|
||
|
let n = row[0].parse::<f32>().unwrap();
|
||
|
world.numbers.push((n, f32::NAN));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[given("a number")]
|
||
|
async fn give_rand_number(world: &mut NumWorld) {
|
||
|
world.numbers.push(rand::random());
|
||
|
}
|
||
|
|
||
|
#[when("we calculate the inverted square root of it using the fast inverted square root algorithm")]
|
||
|
async fn calc_fast_inv_sqrt(world: &mut NumWorld) {
|
||
|
for pair in &mut world.numbers {
|
||
|
pair.1 = revsqrt::fast_inverse_sqrt(pair.0)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[when("we calculate the inverted square root of it normally")]
|
||
|
async fn calc_reg_inv_sqrt(world: &mut NumWorld) {
|
||
|
for pair in &mut world.numbers {
|
||
|
pair.1 = revsqrt::regular_inverse_sqrt(pair.0)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[then("the result can be calculated")]
|
||
|
async fn can_be_calculated(world: &mut NumWorld) {
|
||
|
for pair in &mut world.numbers {
|
||
|
assert!(!pair.0.is_nan());
|
||
|
assert!(!pair.1.is_nan());
|
||
|
assert!(pair.0.is_finite());
|
||
|
assert!(pair.1.is_finite());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[then("the result is about the same as if we calculate it normally")]
|
||
|
async fn comp_result_with_normal(world: &mut NumWorld) {
|
||
|
for pair in &mut world.numbers {
|
||
|
assert!(about_same(pair.1, revsqrt::regular_inverse_sqrt(pair.0)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[then(regex = r"the result is m")]
|
||
|
async fn result_is(world: &mut NumWorld, step: &Step) {
|
||
|
if let Some(table) = step.table.as_ref() {
|
||
|
for (row, i) in std::iter::zip(table.rows.iter(), 0..table.rows.len() - 1) {
|
||
|
let m = row[0].parse::<f32>().unwrap();
|
||
|
assert_eq!(world.numbers[i].1, m);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[tokio::main]
|
||
|
async fn main() {
|
||
|
NumWorld::run("tests/features/book/revsqrt-demo.feature").await;
|
||
|
}
|