rs-basic/members/revsqrt/tests/revsqrt.rs

137 lines
4.0 KiB
Rust
Raw Normal View History

2024-01-15 16:29:55 +01:00
use std::iter::zip;
use cucumber::{gherkin::Step, given, then, when, World};
2024-01-12 14:45:00 +01:00
use rand;
#[derive(Debug, Default, World)]
pub struct NumWorld {
2024-01-15 16:29:55 +01:00
numbers: Vec<(f32, f32)>,
2024-01-12 14:45:00 +01:00
}
// is n about the same as m?
2024-01-15 16:29:55 +01:00
// This is actually not so easy! How do you measure "about same"ness?
// Also, it is not transitive, as 1 ≈ 1.1 ≈ 1.2 ≈ 1.3 ≈ ... ≈ 2 ≈ ... ≈ 3 ≈ ... ≈ infinity, that's
// a thought of me at least?
#[inline]
2024-01-12 14:45:00 +01:00
fn about_same(n: f32, m: f32) -> bool {
2024-01-15 16:29:55 +01:00
dbg!((n, m));
dbg!((n - m).abs());
dbg!(calc_gate(n, m));
dbg!((n - m).abs() < calc_gate(n, m));
(n - m).abs() <= calc_gate(n, m)
}
#[inline]
fn calc_gate(n: f32, m: f32) -> f32 {
0.01 + ((n.abs().sqrt().min(m.abs().sqrt())).abs() / 10f32)
}
#[given(regex = r"the number n")]
async fn give_specific_number(world: &mut NumWorld, step: &Step) {
if let Some(table) = step.table.as_ref() {
for row in table.rows.iter().skip(1) {
// NOTE: skip header
let n = row[0].parse::<f32>().unwrap();
world.numbers.push((n, f32::NAN));
}
}
2024-01-12 14:45:00 +01:00
}
2024-01-15 16:29:55 +01:00
#[given("a number")]
async fn give_rand_number(world: &mut NumWorld) {
world.numbers.push(rand::random());
2024-01-12 14:45:00 +01:00
}
2024-01-15 16:29:55 +01:00
#[when("we calculate the inverted square root of it using the fast inverted square root algorithm")]
2024-01-12 14:45:00 +01:00
async fn calc_fast_inv_sqrt(world: &mut NumWorld) {
2024-01-15 16:29:55 +01:00
for pair in &mut world.numbers {
pair.1 = revsqrt::fast_inverse_sqrt(pair.0)
}
2024-01-12 14:45:00 +01:00
}
2024-01-15 16:29:55 +01:00
#[when("we calculate the inverted square root of it normally")]
async fn calc_reg_inv_sqrt(world: &mut NumWorld) {
for pair in &mut world.numbers {
pair.1 = revsqrt::regular_inverse_sqrt(pair.0)
}
}
#[then("the result is about the same as if we calculate it normally")]
2024-01-12 14:45:00 +01:00
async fn comp_result_with_normal(world: &mut NumWorld) {
2024-01-15 16:29:55 +01:00
for pair in &mut world.numbers {
assert!(about_same(pair.1, revsqrt::regular_inverse_sqrt(pair.0)));
}
}
#[then("the result can be calculated")]
async fn can_be_calculated(world: &mut NumWorld) {
for pair in &mut world.numbers {
assert!(!pair.0.is_nan());
assert!(!pair.1.is_nan());
assert!(pair.0.is_finite());
assert!(pair.1.is_finite());
}
}
#[then(regex = r"the result is m")]
async fn result_is(world: &mut NumWorld, step: &Step) {
if let Some(table) = step.table.as_ref() {
for (row, i) in zip(table.rows.iter().skip(1), 0..table.rows.len() - 1) {
// NOTE: skip header
let m = row[0].parse::<f32>().unwrap();
assert_eq!(world.numbers[i].1, m);
}
}
}
#[then(regex = r"the result is about the same as m")]
async fn result_is_about(world: &mut NumWorld, step: &Step) {
if let Some(table) = step.table.as_ref() {
for (row, i) in zip(table.rows.iter().skip(1), 0..table.rows.len() - 1) {
// NOTE: skip header
let m = row[0].parse::<f32>().unwrap();
assert!(
about_same(world.numbers[i].1, m),
"{} and {} are not about the same!",
world.numbers[i].1,
m
);
}
}
}
#[then("they are about the same")]
async fn they_are_about_the_same(world: &mut NumWorld) {
let mut still_same = true;
let mut last_num = world.numbers[0].0;
for tup in &world.numbers {
still_same &= about_same(tup.0, last_num);
assert!(
still_same,
"{} and {} are not about the same! (gate: {})",
tup.0, last_num, calc_gate(tup.0, last_num)
);
last_num = tup.0;
}
}
#[then("they are not about the same")]
async fn they_are_not_about_the_same(world: &mut NumWorld) {
let mut found_a_same = false;
let mut last_num = f32::NAN;
for tup in &world.numbers {
found_a_same |= about_same(tup.0, last_num);
assert!(
!found_a_same,
"{} and {} are about the same! (gate: {})",
tup.0, last_num, calc_gate(tup.0, last_num)
);
last_num = tup.0;
}
2024-01-12 14:45:00 +01:00
}
#[tokio::main]
async fn main() {
futures::executor::block_on(NumWorld::run("tests/features/book/revsqrt.feature"));
}