plexcryptool/plexcryptool/authur1.py

250 lines
10 KiB
Python
Executable file

#!/usr/bin/env python3
"""
A custom authentication hash function aswell as an automated extension attack for it.
Since this (auth) hash did not have a name before, I gave it the name 'authur1'
@author: Christoph J. Scherr <software@cscherr.de>
@license: MIT
@source: https://git.cscherr.de/PlexSheep/plexcryptool/src/branch/master/plexcryptool/authur1.py
"""
import argparse
import random
# FIXME make proper pyi Implementation for the rust part
# only used for bit rotation
# your editor might complain here, because it can only find a pyi file with type annotations.
# rest assured, you just need to compile the rust part with maturin develop and you will be fine.
from plexcryptool import binary
# constants for authur1
SHIFT_LENGTH = 17
DEFINED_INITIAL = bytearray([0x52, 0x4f, 0x46, 0x4c])
PADDING = 0xff
# constants for Circular shifting
# constant value defined in limits.h, it's 8 (bit) on my machine, on yours probably too.
CHAR_BIT = 8
# python is being a dynamic dumbass, do a 32 bit shift ~ 4 byte
VALUE_SIZE = 4
def inner_authur1(input: int) -> int:
"""
passes all tests
"""
assert input.bit_length() <= 32, "input length is <= 32: %d" % input.bit_length()
# plexcryptool.binary uses u32 for shifting
output: int = input ^ (binary.rotl32(input, SHIFT_LENGTH))
assert output.bit_length() <= 32, "output length is <= 32: %d" % output.bit_length()
return output
def authur1(input: bytearray, verbose: bool = False) -> bytearray:
if verbose:
print("input: %s" % input)
internal_buffer: bytearray = bytearray()
accumulator: bytearray = DEFINED_INITIAL
for in_byte in input:
if verbose:
print("current in_byte: %s" % chr(in_byte))
print("current buffer: %s" % internal_buffer.hex())
if len(internal_buffer) < 4:
if verbose:
print("loading buffer")
internal_buffer.append(in_byte)
continue
# else
assert len(internal_buffer) == 4, "internal buffer of authur1 not 4 byte long"
accuint: int = int.from_bytes(accumulator)
accuint: int = inner_authur1(accuint ^ int.from_bytes(internal_buffer))
accumulator: bytearray = bytearray(accuint.to_bytes(4))
internal_buffer.clear()
assert len(internal_buffer) == 0
internal_buffer.append(in_byte)
assert len(accumulator) == 4, "accumulator too long: %d bytes" % len(accumulator)
if verbose:
print("internal state after the bytes were read: %s" % accumulator.hex())
# finished loading input bytes into the hash, fill with padding and do it one last time
if verbose:
print("buffer pre last fill: %s" % internal_buffer.hex())
while len(internal_buffer) < 4:
internal_buffer.append(PADDING)
if verbose:
print("buffer after last fill: %s" % internal_buffer.hex())
assert len(internal_buffer) == 4, "internal buffer of authur1 not 4 byte long"
# same as above, one last time
assert len(accumulator) == 4, "accumulator too long: %d bytes" % len(accumulator)
accuint: int = int.from_bytes(accumulator)
accuint: int = inner_authur1(accuint ^ int.from_bytes(internal_buffer))
accumulator: bytearray = bytearray(accuint.to_bytes(4))
assert len(accumulator) == 4, "accumulator too long: %d bytes" % len(accumulator)
if verbose:
print("returning state: %s" % accumulator.hex())
# now Q the accumulator and return
# if input = "" this step breaks things, just remove it.
if len(input) != 0:
accuint: int = int.from_bytes(accumulator)
accuint: int = inner_authur1(accuint)
accumulator: bytearray = bytearray(accuint.to_bytes(4))
return accumulator
def test():
init: int = int.from_bytes(DEFINED_INITIAL)
a: int = inner_authur1(init)
b: int = inner_authur1(a)
c: int = inner_authur1(b)
assert a == 0xded7e2d2, "Q(S0) returns wrong value: %s" % hex(a)
assert b == 0x1b725f7d, "Q(Q(S0)) returns wrong value: %s" % hex(b)
assert c == 0xa5886999, "Q(Q(Q(S0))) returns wrong value: %s" % hex(c)
print("Q aka inner_authur1 passed the test")
ha: bytearray = authur1(bytearray(0))
hb: bytearray = authur1(bytearray(b'A'))
hc: bytearray = authur1(bytearray(b'AB'))
hd: bytearray = authur1(bytearray(b'ABC'))
he: bytearray = authur1(bytearray(b'ABCD'))
hf: bytearray = authur1(bytearray(b'ABCDE'))
assert int.from_bytes(ha) == 0xded7e2d2, "H(\"\") returns wrong value: %s" % ha.hex()
assert int.from_bytes(hb) == 0x5d725f7f, "H(\"A\") returns wrong value: %s" % hb.hex()
assert int.from_bytes(hc) == 0x5f3b5f7f, "H(\"AB\") returns wrong value: %s" % hc.hex()
assert int.from_bytes(hd) == 0x5f39137f, "H(\"ABC\") returns wrong value: %s" % hd.hex()
assert int.from_bytes(he) == 0x5f391128, "H(\"ABCD\") returns wrong value: %s" % he.hex()
assert int.from_bytes(hf) == 0x2f69af58, "H(\"ABCDE\") returns wrong value: %s" % hf.hex()
print("H aka authur1 passed the test")
test_extension_attack()
print("All tests passed!")
def keyed_hash(message: bytearray, key: bytearray) -> bytearray:
assert len(key) == 16, "key is not 16 Byte long: %s" % len(key)
input: bytearray = key + message
mic: bytearray = authur1(input)
return mic
def extension_attack(valid_pairs: list):
"""
Extension attack against keyed hash of authur1
Procedure:
valid_pairs parsed in main()
> Consider a case where the length of K || m together with internal
> length fields is a multiple of the internal block size.
> The output value now corresponds tightly with the internal state of H
> after the digesting the message
> This gives rise to a so-called extension attack
> An attacker observes a message that is the correct length and the attacker
> also knows the legitimate (public) MIC of that message
> They then infer the internal state just before emission of the MIC
> When the internal state is known at this point in time, the attacker can
> simply reset their H to that internal state
> Then append arbitrary malicious data and compute a valid MIC
If I understand correctly, this is a new MIC, not one of the valid MICs we already know.
> Knowledge of the key is not necessary at all, yet valid forgeries can be
> produced efficiently by the adversary
find a valid message that has the right length (length % 16 == 0)
-> we don't have one given in the exercise
reverse the last state before finalizing in the hash
-> we have a valid internal state and can continue to append our own whatever to it?
-> But the mic at the end should change, right?
(the exercise said the Key K has length 16, which is really handy, so i don't need to calculate for that.)
"""
# find a valid message
target_pair = None
for msg, mic in valid_pairs:
print("%s has length %s" % (msg, len(msg)))
if len(msg) % 16 == 0:
# we have a message of the right length!
target_pair = (msg, mic)
if target_pair is None:
print("The given originals were not sufficient to perform an extension attack.\n"+
"We need a message, which has a length that is a multiple of 16 (Bytes).")
return
print("Found a fitting target pair: %s" % target_pair)
def test_extension_attack():
"""
Test the attack against a known key
"""
# TODO
raise(NotImplementedError("Extension attack is still TODO"))
def main():
parser = argparse.ArgumentParser(prog="authur1 authentication hash", description='Implementation and attack for the custom authur1 hash. Don\'t actually use this hash!')
parser.add_argument('-i', '--hash', type=str,
help='an input that should be hashed')
parser.add_argument('-k', '--key', type=str,
help='an key that should be used with auth mode')
parser.add_argument('-t', '--test', action="store_true",
help='perform tests')
parser.add_argument('-v', '--verbose', action="store_true",
help='print many things')
parser.add_argument('-e', '--extension-attack', type=str,
help='perform an extension attack, this option requires known mics in the form: "msg1:deadbeed,msg2:abababab,msg3:ecbadf,..."')
parser.add_argument('-a', '--auth', action="store_true",
help='generate a message integrity code (mic), needs a value to be hashed. If no key is specified, a random key will be generated.')
args = parser.parse_args()
if args.test:
test()
exit()
elif args.auth and args.hash:
if args.key:
key: bytearray = bytearray(args.key.encode())
if len(key) < 16:
print("Your key is not long enough and will be padded with random bytes.")
key.extend(random.randbytes(16 - len(key)))
elif len(key) > 16:
print("Your key is too long!")
exit(1)
else:
key: bytearray = bytearray(random.randbytes(16))
my_bytes: bytearray = bytearray(str.encode(args.hash))
mic: bytearray = keyed_hash(my_bytes, key)
print("KEY (str): %s" % key.decode(errors="replace"))
print("KEY (hex): %s" % key.hex())
print("MIC: %s" % mic.hex())
exit()
elif args.hash:
my_bytes: bytearray = bytearray(str.encode(args.hash))
hashed: bytearray = authur1(my_bytes, args.verbose)
print("hash for \"%s\" is:\n%s" % (args.hash, hashed.hex()))
exit()
elif args.extension_attack:
# TODO
original_strs: list = args.extension_attack.split(",")
# will store our processed given messages and mics as tuples of bytearrays
valid_pairs: list = []
for pair in original_strs:
try:
(msg, mic) = pair.split(":")
assert (len(mic) == 8), "given mic '%s' formatted incorrectly" % mic
mic_int: int = int(mic, 16)
valid_pairs.append((bytearray(msg.encode()),bytearray(mic_int.to_bytes(4))))
except Exception as e:
print(e)
print("given pair '%s' formatted incorrectly" % pair)
exit(1)
extension_attack(valid_pairs)
exit()
parser.print_help()
if __name__ == "__main__":
main()