ecc restructuring, working on adding

This commit is contained in:
Christoph J. Scherr 2023-06-08 16:53:44 +02:00
parent 0c8ee362b4
commit 8f35b7d950
Signed by: PlexSheep
GPG Key ID: 25B4ACF7D88186CC
5 changed files with 182 additions and 106 deletions

View File

@ -1,7 +1,7 @@
[package]
name = "plexcryptool"
authors = ["Christoph J. Scherr <software@cscherr.de>"]
version = "0.2.8"
version = "0.2.9"
edition = "2021"
readme = "README.md"
description = "Various tools for use with math and cryptology, includes executable and a library."

View File

@ -3,7 +3,4 @@ various scripts
these are coded in python and can currently not be called from the executable.
"""
from . import authur1 as authur1
from . import basic_decrypt as basic_decrypt
from . import md5_analyzer as md5_analyzer
from . import trash_hash as trash_hash
from . import *

View File

@ -74,6 +74,13 @@ fn register_algo_module(py: Python, parent_module: &PyModule) -> PyResult<()> {
Ok(())
}
#[pymodule]
fn register_scripts_module(py: Python, parent_module: &PyModule) -> PyResult<()> {
let scripts_module = PyModule::new(py, "scripts")?;
parent_module.add_submodule(scripts_module)?;
Ok(())
}
/// A Python module implemented in Rust.
#[pymodule]
fn plexcryptool(py: Python, m: &PyModule) -> PyResult<()> {
@ -81,5 +88,6 @@ fn plexcryptool(py: Python, m: &PyModule) -> PyResult<()> {
register_math_module(py, m)?;
register_cplex_module(py, m)?;
register_algo_module(py, m)?;
register_scripts_module(py, m)?;
Ok(())
}

View File

@ -1,5 +1,5 @@
#![allow(dead_code)]
use std::{ops::{Mul, Neg}, fmt::Debug};
use std::{ops::{Mul, Neg}, fmt::Debug, f32::consts::PI};
/// eliptic curve cryptograp.s
///
@ -15,46 +15,53 @@ use super::gallois::GalloisField;
use num::Integer;
use pyo3::prelude::*;
#[derive(Debug, Clone)]
#[derive(Debug, Clone, Eq, PartialEq)]
#[allow(non_snake_case)]
/// represent a specific eliptic curve
///
/// real curves not supported, only in Gallois Fields
/// Eq and PartialEq might behave badly if the verbosity level is not the same. FIXME
pub struct ElipticCurve {
f: GalloisField,
a: i128,
b: i128,
field: GalloisField,
a: u128,
b: u128,
points: Vec<ElipticCurvePoint>,
verbose: bool,
INFINITY_POINT: Option<ElipticCurvePoint>
INFINITY_POINT: ElipticCurvePoint
}
impl ElipticCurve {
pub fn new(f: GalloisField, a: i128, b: i128, verbose: bool) -> Result<Self, String> {
pub fn new(field: GalloisField, a: i128, b: i128, verbose: bool) -> Result<Self, String> {
// convert numbers to u128 in the fields
let a = field.reduce(a);
let b = field.reduce(b);
// check diskriminante
let d = 4*a.pow(3) + 27*b.pow(2);
if f.reduce(d) == 0 {
if field.reduce(d) == 0 {
if verbose {
println!("4*{a}³ + 27*{b}² = {d} = {} != 0\n\
Check for Diskriminante not passed", f.reduce(d));
Check for Diskriminante not passed", field.reduce(d));
}
return Err(String::from("Diskriminante not 0"));
}
else if verbose {
println!("4*{a}³ + 27*{b}² = {d} = {} != 0\n
Check for Diskriminante passed", f.reduce(d));
println!("4*{a}³ + 27*{b}² = {d} = {} != 0\n\
Check for Diskriminante passed", field.reduce(d));
}
let mut infty = ElipticCurvePoint::new(0, 0, field, false);
infty.is_infinity_point = true;
let infty = infty;
let mut e = ElipticCurve {
f,
field,
a,
b,
points: Vec::new(),
verbose,
INFINITY_POINT: None
INFINITY_POINT: infty
};
let infty = ElipticCurvePoint::new(0, 0, e.f);
e.INFINITY_POINT = Some(infty);
return Ok(e);
}
@ -64,15 +71,15 @@ impl ElipticCurve {
T: Integer,
T: Mul,
T: Debug,
T: num::cast::AsPrimitive<i128>,
T: num::cast::AsPrimitive<u128>,
T: Neg
{
dbg!(&r);
dbg!(&s);
let r: i128 = num::cast::AsPrimitive::as_(r);
let s: i128 = num::cast::AsPrimitive::as_(s);
let res = s.pow(2) - r.pow(3) - (self.a * r) - self.b;
let res1 = self.f.reduce(res);
let r: u128 = num::cast::AsPrimitive::as_(r);
let s: u128 = num::cast::AsPrimitive::as_(s);
let res = (s.pow(2) as u128) - (r.pow(3) as u128) - (self.a * r) - self.b;
let res1 = self.field.reduce(res);
if self.verbose {
println!("F({}, {}) = {}² - {}³ - {} * {} - {} = {res} = {res1}",
r, s, s, r, self.a, r, self.b
@ -85,8 +92,8 @@ impl ElipticCurve {
let mut valid = true;
// insert into poly
let left = self.f.reduce(p.s.pow(2));
let right = self.f.reduce(p.r.pow(3) + self.a*p.r + self.b);
let left = self.field.reduce(p.s.pow(2));
let right = self.field.reduce((p.r.pow(3) as u128) + self.a*p.r + self.b);
if self.verbose {
let unred_left = p.s.pow(2);
let unred_right = p.r.pow(3) + self.a*p.r + self.b;
@ -107,93 +114,81 @@ impl ElipticCurve {
valid &= left == right;
return valid;
}
}
#[test]
fn test_check_point() {
let f = GalloisField::new(13, true, None);
let ec = ElipticCurve::new(f, -3, 3, true).expect("ec cant be created");
// real points
let p = vec![
ElipticCurvePoint::new(0, 4, f),
ElipticCurvePoint::new(0, 9, f),
ElipticCurvePoint::new(1, 1, f),
ElipticCurvePoint::new(1, 12, f),
ElipticCurvePoint::new(4, 4, f),
ElipticCurvePoint::new(4, 9, f),
ElipticCurvePoint::new(5, 3, f),
ElipticCurvePoint::new(5, 10, f),
ElipticCurvePoint::new(7, 0, f),
ElipticCurvePoint::new(8, 6, f),
ElipticCurvePoint::new(9, 4, f),
ElipticCurvePoint::new(9, 9, f),
ElipticCurvePoint::new(11, 1, f),
ElipticCurvePoint::new(11, 12, f),
];
// random values, not part of the e, fc.
let np = vec![
ElipticCurvePoint::new(0, 5, f),
ElipticCurvePoint::new(1, 9, f),
ElipticCurvePoint::new(1, 4, f),
];
for i in p {
assert!(ec.clone().check_point(i));
}
for i in np {
assert!(!ec.clone().check_point(i));
}
}
#[derive(Debug, Clone, Copy)]
/// represent a specific eliptic curves point
pub struct ElipticCurvePoint {
r: i128,
s: i128,
is_infinity_point: bool,
field: GalloisField
}
impl ElipticCurvePoint {
pub fn new(r: i128, s: i128, field: GalloisField) -> ElipticCurvePoint {
ElipticCurvePoint {
r,
s,
is_infinity_point: false,
field
}
}
/// add two points
pub fn add(self, point: Self) -> Result<Self, String> {
if self.field.cha != point.field.cha {
pub fn add(&self, p1: ElipticCurvePoint, p2: ElipticCurvePoint) -> Result<ElipticCurvePoint, String> {
if p1.field != p2.field {
return Err(String::from("Points are not on the same field"));
}
if p1.field.prime_base {
// case 1: both infty
if p1.is_infinity_point && p2.is_infinity_point {
return Ok(self.INFINITY_POINT);
}
// case 2: one is infty
else if p1.is_infinity_point && !p2.is_infinity_point {
return Ok(self.INFINITY_POINT);
}
else if !p1.is_infinity_point && p2.is_infinity_point {
return Ok(p1);
}
// case 3: r_1 != r_2
else if p1.r != p2.r {
if self.field.prime_base {
// case 1 both infty
if self.is_infinity_point && point.is_infinity_point {
return Ok(point);
let m = self.field.reduce(p2.s - p1.s) *
self.field.inverse(
self.field.reduce(p2.r - p1.r)
).expect("could not find inverse");
if self.verbose || p2.verbose {
println!("m = [s_2 - s_1]/[r_2 - r_1] = [{} - {}]/[{} - {}] = {} = {}",
p2.s, p1.s, p2.r, p1.r, m, p1.field.reduce(m))
}
// case 2 one is infty
else if self.is_infinity_point && !point.is_infinity_point {
return Ok(point);
let m = self.field.reduce(m);
let r3 = self.field.reduce(m.pow(3)) - p1.r - p2.r;
if self.verbose {
println!("r_3 = m³ - r_1 - r_2 = {} - {} - {} = {} = {}",
m.pow(3), p1.r, p2.r, r3, p1.field.reduce(r3));
}
else if !self.is_infinity_point && point.is_infinity_point {
return Ok(self);
let r3 = self.field.reduce(r3);
let s3 = m.pow(3) - 2*m*p1.r - m*p2.r + p1.s;
if self.verbose || p2.verbose {
println!("s_3 = m³ 2*m*r_1 m*r_2 + s1 = {} - 2*{m}*{} - {m}*{} + {} = {} = {}",
m.pow(3), p1.r, p2.r, p1.s, s3, self.field.reduce(s3));
}
// case 3 r_1 != r_2
else if self.r != point.r {
let s3 = self.field.reduce(s3) as i128;
let p = ElipticCurvePoint::new(r3, self.field.reduce(-s3), self.field, self.verbose);
panic!("TODO");
}
else {
panic!("TODO");
}
}
// case 4: r_1 = r_2 && s_1 = -s_2
else if p1.r == p2.r && p1.s == self.neg(p2).s {
return Ok(self.INFINITY_POINT);
}
// case 5: P + P where P = (r, 0)
else if p1 == p2 && p1.s == 0 {
return Ok(self.INFINITY_POINT);
}
// case 6: P + P where s != 0
else if p1 == p2 && p1.s != 0 {
if self.field.prime_base {
panic!("TODO");
}
else {
panic!("TODO");
}
// case 4 r_1 = r_2; s_1 = -s_2
else if self.r == point.r && self.s == point.neg().s {
return Ok(Self::new(0, 0, self.field));
}
// how do we get here?
// this should never occur
else {
panic!("we dont know what to do in this case?")
panic!("No rules for adding these two points, should not be possible mathmatically.")
}
}
else {
@ -202,17 +197,91 @@ impl ElipticCurvePoint {
}
/// get negative of a point
pub fn neg(self) -> Self {
pub fn neg(&self, p: ElipticCurvePoint) -> ElipticCurvePoint {
return ElipticCurvePoint::new(
self.r,
self.field.reduce(-(self.s as i128)) as i128,
self.field
p.r,
p.field.reduce(-(p.s as i128)),
p.field,
p.verbose
);
}
/// multip.s a point by an integer
pub fn mul(self, n: u128) -> Self {
pub fn mul(self, p: ElipticCurvePoint, n: u128) -> ElipticCurvePoint {
// TODO
panic!("TODO");
}
}
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
/// represent a specific eliptic curves point
///
/// PartialEq and Eq might behave badly with diffrent verbosity FIXME
pub struct ElipticCurvePoint {
r: u128,
s: u128,
is_infinity_point: bool,
field: GalloisField,
verbose: bool
}
impl ElipticCurvePoint {
/// create a new point
pub fn new(r: u128, s: u128, field: GalloisField, verbose: bool) -> ElipticCurvePoint {
ElipticCurvePoint {
r,
s,
is_infinity_point: false,
field,
verbose
}
}
}
#[cfg(test)]
pub mod test {
use super::*;
#[test]
fn test_eliptic_curve_new() {
let f = GalloisField::new(7, true, None);
let _ = ElipticCurve::new(f, 1, 2, true).expect_err("invalid ec can be created");
let _ = ElipticCurve::new(f, -3, 3, true).expect("ec cant be created");
}
#[test]
fn test_check_point() {
let f = GalloisField::new(13, true, None);
let ec = ElipticCurve::new(f, -3, 3, true).expect("ec cant be created");
// real points
let p = vec![
ElipticCurvePoint::new(0, 4, f, false),
ElipticCurvePoint::new(0, 9, f, false),
ElipticCurvePoint::new(1, 1, f, false),
ElipticCurvePoint::new(1, 12, f, false),
ElipticCurvePoint::new(4, 4, f, false),
ElipticCurvePoint::new(4, 9, f, false),
ElipticCurvePoint::new(5, 3, f, false),
ElipticCurvePoint::new(5, 10, f, false),
ElipticCurvePoint::new(7, 0, f, false),
ElipticCurvePoint::new(8, 6, f, false),
ElipticCurvePoint::new(9, 4, f, false),
ElipticCurvePoint::new(9, 9, f, false),
ElipticCurvePoint::new(11, 1, f, false),
ElipticCurvePoint::new(11, 12, f, false),
];
// random values, not part of the e, fc.
let np = vec![
ElipticCurvePoint::new(0, 5, f, false),
ElipticCurvePoint::new(1, 9, f, false),
ElipticCurvePoint::new(1, 4, f, false),
];
for i in p {
assert!(ec.clone().check_point(i));
}
for i in np {
assert!(!ec.clone().check_point(i));
}
}
}

View File

@ -62,9 +62,11 @@ impl fmt::Display for NoRootError {
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[pyclass]
/// represent a gallois field
///
/// PartialEq and Eq might behave badly when verbosity is not the same FIXME
pub struct GalloisField {
pub base: u128,
pub cha: u128,