ecc restructuring, working on adding
This commit is contained in:
parent
0c8ee362b4
commit
8f35b7d950
|
@ -1,7 +1,7 @@
|
|||
[package]
|
||||
name = "plexcryptool"
|
||||
authors = ["Christoph J. Scherr <software@cscherr.de>"]
|
||||
version = "0.2.8"
|
||||
version = "0.2.9"
|
||||
edition = "2021"
|
||||
readme = "README.md"
|
||||
description = "Various tools for use with math and cryptology, includes executable and a library."
|
||||
|
|
|
@ -3,7 +3,4 @@ various scripts
|
|||
|
||||
these are coded in python and can currently not be called from the executable.
|
||||
"""
|
||||
from . import authur1 as authur1
|
||||
from . import basic_decrypt as basic_decrypt
|
||||
from . import md5_analyzer as md5_analyzer
|
||||
from . import trash_hash as trash_hash
|
||||
from . import *
|
||||
|
|
|
@ -74,6 +74,13 @@ fn register_algo_module(py: Python, parent_module: &PyModule) -> PyResult<()> {
|
|||
Ok(())
|
||||
}
|
||||
|
||||
#[pymodule]
|
||||
fn register_scripts_module(py: Python, parent_module: &PyModule) -> PyResult<()> {
|
||||
let scripts_module = PyModule::new(py, "scripts")?;
|
||||
parent_module.add_submodule(scripts_module)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// A Python module implemented in Rust.
|
||||
#[pymodule]
|
||||
fn plexcryptool(py: Python, m: &PyModule) -> PyResult<()> {
|
||||
|
@ -81,5 +88,6 @@ fn plexcryptool(py: Python, m: &PyModule) -> PyResult<()> {
|
|||
register_math_module(py, m)?;
|
||||
register_cplex_module(py, m)?;
|
||||
register_algo_module(py, m)?;
|
||||
register_scripts_module(py, m)?;
|
||||
Ok(())
|
||||
}
|
||||
|
|
269
src/math/ecc.rs
269
src/math/ecc.rs
|
@ -1,5 +1,5 @@
|
|||
#![allow(dead_code)]
|
||||
use std::{ops::{Mul, Neg}, fmt::Debug};
|
||||
use std::{ops::{Mul, Neg}, fmt::Debug, f32::consts::PI};
|
||||
|
||||
/// eliptic curve cryptograp.s
|
||||
///
|
||||
|
@ -15,46 +15,53 @@ use super::gallois::GalloisField;
|
|||
use num::Integer;
|
||||
use pyo3::prelude::*;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
#[allow(non_snake_case)]
|
||||
/// represent a specific eliptic curve
|
||||
///
|
||||
/// real curves not supported, only in Gallois Fields
|
||||
/// Eq and PartialEq might behave badly if the verbosity level is not the same. FIXME
|
||||
pub struct ElipticCurve {
|
||||
f: GalloisField,
|
||||
a: i128,
|
||||
b: i128,
|
||||
field: GalloisField,
|
||||
a: u128,
|
||||
b: u128,
|
||||
points: Vec<ElipticCurvePoint>,
|
||||
verbose: bool,
|
||||
INFINITY_POINT: Option<ElipticCurvePoint>
|
||||
INFINITY_POINT: ElipticCurvePoint
|
||||
}
|
||||
|
||||
impl ElipticCurve {
|
||||
pub fn new(f: GalloisField, a: i128, b: i128, verbose: bool) -> Result<Self, String> {
|
||||
pub fn new(field: GalloisField, a: i128, b: i128, verbose: bool) -> Result<Self, String> {
|
||||
|
||||
// convert numbers to u128 in the fields
|
||||
let a = field.reduce(a);
|
||||
let b = field.reduce(b);
|
||||
|
||||
// check diskriminante
|
||||
let d = 4*a.pow(3) + 27*b.pow(2);
|
||||
if f.reduce(d) == 0 {
|
||||
if field.reduce(d) == 0 {
|
||||
if verbose {
|
||||
println!("4*{a}³ + 27*{b}² = {d} = {} != 0\n\
|
||||
Check for Diskriminante not passed", f.reduce(d));
|
||||
Check for Diskriminante not passed", field.reduce(d));
|
||||
}
|
||||
return Err(String::from("Diskriminante not 0"));
|
||||
}
|
||||
else if verbose {
|
||||
println!("4*{a}³ + 27*{b}² = {d} = {} != 0\n
|
||||
Check for Diskriminante passed", f.reduce(d));
|
||||
println!("4*{a}³ + 27*{b}² = {d} = {} != 0\n\
|
||||
Check for Diskriminante passed", field.reduce(d));
|
||||
}
|
||||
|
||||
let mut infty = ElipticCurvePoint::new(0, 0, field, false);
|
||||
infty.is_infinity_point = true;
|
||||
let infty = infty;
|
||||
let mut e = ElipticCurve {
|
||||
f,
|
||||
field,
|
||||
a,
|
||||
b,
|
||||
points: Vec::new(),
|
||||
verbose,
|
||||
INFINITY_POINT: None
|
||||
INFINITY_POINT: infty
|
||||
};
|
||||
let infty = ElipticCurvePoint::new(0, 0, e.f);
|
||||
e.INFINITY_POINT = Some(infty);
|
||||
return Ok(e);
|
||||
}
|
||||
|
||||
|
@ -64,15 +71,15 @@ impl ElipticCurve {
|
|||
T: Integer,
|
||||
T: Mul,
|
||||
T: Debug,
|
||||
T: num::cast::AsPrimitive<i128>,
|
||||
T: num::cast::AsPrimitive<u128>,
|
||||
T: Neg
|
||||
{
|
||||
dbg!(&r);
|
||||
dbg!(&s);
|
||||
let r: i128 = num::cast::AsPrimitive::as_(r);
|
||||
let s: i128 = num::cast::AsPrimitive::as_(s);
|
||||
let res = s.pow(2) - r.pow(3) - (self.a * r) - self.b;
|
||||
let res1 = self.f.reduce(res);
|
||||
let r: u128 = num::cast::AsPrimitive::as_(r);
|
||||
let s: u128 = num::cast::AsPrimitive::as_(s);
|
||||
let res = (s.pow(2) as u128) - (r.pow(3) as u128) - (self.a * r) - self.b;
|
||||
let res1 = self.field.reduce(res);
|
||||
if self.verbose {
|
||||
println!("F({}, {}) = {}² - {}³ - {} * {} - {} = {res} = {res1}",
|
||||
r, s, s, r, self.a, r, self.b
|
||||
|
@ -85,8 +92,8 @@ impl ElipticCurve {
|
|||
let mut valid = true;
|
||||
|
||||
// insert into poly
|
||||
let left = self.f.reduce(p.s.pow(2));
|
||||
let right = self.f.reduce(p.r.pow(3) + self.a*p.r + self.b);
|
||||
let left = self.field.reduce(p.s.pow(2));
|
||||
let right = self.field.reduce((p.r.pow(3) as u128) + self.a*p.r + self.b);
|
||||
if self.verbose {
|
||||
let unred_left = p.s.pow(2);
|
||||
let unred_right = p.r.pow(3) + self.a*p.r + self.b;
|
||||
|
@ -107,93 +114,81 @@ impl ElipticCurve {
|
|||
valid &= left == right;
|
||||
return valid;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_check_point() {
|
||||
let f = GalloisField::new(13, true, None);
|
||||
let ec = ElipticCurve::new(f, -3, 3, true).expect("ec cant be created");
|
||||
// real points
|
||||
let p = vec![
|
||||
ElipticCurvePoint::new(0, 4, f),
|
||||
ElipticCurvePoint::new(0, 9, f),
|
||||
ElipticCurvePoint::new(1, 1, f),
|
||||
ElipticCurvePoint::new(1, 12, f),
|
||||
ElipticCurvePoint::new(4, 4, f),
|
||||
ElipticCurvePoint::new(4, 9, f),
|
||||
ElipticCurvePoint::new(5, 3, f),
|
||||
ElipticCurvePoint::new(5, 10, f),
|
||||
ElipticCurvePoint::new(7, 0, f),
|
||||
ElipticCurvePoint::new(8, 6, f),
|
||||
ElipticCurvePoint::new(9, 4, f),
|
||||
ElipticCurvePoint::new(9, 9, f),
|
||||
ElipticCurvePoint::new(11, 1, f),
|
||||
ElipticCurvePoint::new(11, 12, f),
|
||||
];
|
||||
// random values, not part of the e, fc.
|
||||
let np = vec![
|
||||
ElipticCurvePoint::new(0, 5, f),
|
||||
ElipticCurvePoint::new(1, 9, f),
|
||||
ElipticCurvePoint::new(1, 4, f),
|
||||
];
|
||||
for i in p {
|
||||
assert!(ec.clone().check_point(i));
|
||||
}
|
||||
for i in np {
|
||||
assert!(!ec.clone().check_point(i));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
/// represent a specific eliptic curves point
|
||||
pub struct ElipticCurvePoint {
|
||||
r: i128,
|
||||
s: i128,
|
||||
is_infinity_point: bool,
|
||||
field: GalloisField
|
||||
}
|
||||
|
||||
impl ElipticCurvePoint {
|
||||
pub fn new(r: i128, s: i128, field: GalloisField) -> ElipticCurvePoint {
|
||||
ElipticCurvePoint {
|
||||
r,
|
||||
s,
|
||||
is_infinity_point: false,
|
||||
field
|
||||
}
|
||||
}
|
||||
|
||||
/// add two points
|
||||
pub fn add(self, point: Self) -> Result<Self, String> {
|
||||
if self.field.cha != point.field.cha {
|
||||
pub fn add(&self, p1: ElipticCurvePoint, p2: ElipticCurvePoint) -> Result<ElipticCurvePoint, String> {
|
||||
if p1.field != p2.field {
|
||||
return Err(String::from("Points are not on the same field"));
|
||||
}
|
||||
if self.field.prime_base {
|
||||
// case 1 both infty
|
||||
if self.is_infinity_point && point.is_infinity_point {
|
||||
return Ok(point);
|
||||
if p1.field.prime_base {
|
||||
// case 1: both infty
|
||||
if p1.is_infinity_point && p2.is_infinity_point {
|
||||
return Ok(self.INFINITY_POINT);
|
||||
}
|
||||
// case 2 one is infty
|
||||
else if self.is_infinity_point && !point.is_infinity_point {
|
||||
return Ok(point);
|
||||
// case 2: one is infty
|
||||
else if p1.is_infinity_point && !p2.is_infinity_point {
|
||||
return Ok(self.INFINITY_POINT);
|
||||
}
|
||||
else if !self.is_infinity_point && point.is_infinity_point {
|
||||
return Ok(self);
|
||||
else if !p1.is_infinity_point && p2.is_infinity_point {
|
||||
return Ok(p1);
|
||||
}
|
||||
// case 3 r_1 != r_2
|
||||
else if self.r != point.r {
|
||||
panic!("TODO");
|
||||
// case 3: r_1 != r_2
|
||||
else if p1.r != p2.r {
|
||||
if self.field.prime_base {
|
||||
let m = self.field.reduce(p2.s - p1.s) *
|
||||
self.field.inverse(
|
||||
self.field.reduce(p2.r - p1.r)
|
||||
).expect("could not find inverse");
|
||||
if self.verbose || p2.verbose {
|
||||
println!("m = [s_2 - s_1]/[r_2 - r_1] = [{} - {}]/[{} - {}] = {} = {}",
|
||||
p2.s, p1.s, p2.r, p1.r, m, p1.field.reduce(m))
|
||||
}
|
||||
let m = self.field.reduce(m);
|
||||
|
||||
let r3 = self.field.reduce(m.pow(3)) - p1.r - p2.r;
|
||||
if self.verbose {
|
||||
println!("r_3 = m³ - r_1 - r_2 = {} - {} - {} = {} = {}",
|
||||
m.pow(3), p1.r, p2.r, r3, p1.field.reduce(r3));
|
||||
}
|
||||
let r3 = self.field.reduce(r3);
|
||||
|
||||
let s3 = m.pow(3) - 2*m*p1.r - m*p2.r + p1.s;
|
||||
if self.verbose || p2.verbose {
|
||||
println!("s_3 = m³ − 2*m*r_1 − m*r_2 + s1 = {} - 2*{m}*{} - {m}*{} + {} = {} = {}",
|
||||
m.pow(3), p1.r, p2.r, p1.s, s3, self.field.reduce(s3));
|
||||
}
|
||||
let s3 = self.field.reduce(s3) as i128;
|
||||
let p = ElipticCurvePoint::new(r3, self.field.reduce(-s3), self.field, self.verbose);
|
||||
|
||||
panic!("TODO");
|
||||
}
|
||||
else {
|
||||
panic!("TODO");
|
||||
}
|
||||
}
|
||||
// case 4 r_1 = r_2; s_1 = -s_2
|
||||
else if self.r == point.r && self.s == point.neg().s {
|
||||
return Ok(Self::new(0, 0, self.field));
|
||||
// case 4: r_1 = r_2 && s_1 = -s_2
|
||||
else if p1.r == p2.r && p1.s == self.neg(p2).s {
|
||||
return Ok(self.INFINITY_POINT);
|
||||
}
|
||||
// case 5: P + P where P = (r, 0)
|
||||
else if p1 == p2 && p1.s == 0 {
|
||||
return Ok(self.INFINITY_POINT);
|
||||
}
|
||||
// case 6: P + P where s != 0
|
||||
else if p1 == p2 && p1.s != 0 {
|
||||
if self.field.prime_base {
|
||||
panic!("TODO");
|
||||
}
|
||||
else {
|
||||
panic!("TODO");
|
||||
}
|
||||
}
|
||||
|
||||
// how do we get here?
|
||||
// this should never occur
|
||||
else {
|
||||
panic!("we dont know what to do in this case?")
|
||||
panic!("No rules for adding these two points, should not be possible mathmatically.")
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
@ -202,17 +197,91 @@ impl ElipticCurvePoint {
|
|||
}
|
||||
|
||||
/// get negative of a point
|
||||
pub fn neg(self) -> Self {
|
||||
pub fn neg(&self, p: ElipticCurvePoint) -> ElipticCurvePoint {
|
||||
return ElipticCurvePoint::new(
|
||||
self.r,
|
||||
self.field.reduce(-(self.s as i128)) as i128,
|
||||
self.field
|
||||
p.r,
|
||||
p.field.reduce(-(p.s as i128)),
|
||||
p.field,
|
||||
p.verbose
|
||||
);
|
||||
}
|
||||
|
||||
/// multip.s a point by an integer
|
||||
pub fn mul(self, n: u128) -> Self {
|
||||
pub fn mul(self, p: ElipticCurvePoint, n: u128) -> ElipticCurvePoint {
|
||||
// TODO
|
||||
panic!("TODO");
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
|
||||
/// represent a specific eliptic curves point
|
||||
///
|
||||
/// PartialEq and Eq might behave badly with diffrent verbosity FIXME
|
||||
pub struct ElipticCurvePoint {
|
||||
r: u128,
|
||||
s: u128,
|
||||
is_infinity_point: bool,
|
||||
field: GalloisField,
|
||||
verbose: bool
|
||||
}
|
||||
|
||||
impl ElipticCurvePoint {
|
||||
/// create a new point
|
||||
pub fn new(r: u128, s: u128, field: GalloisField, verbose: bool) -> ElipticCurvePoint {
|
||||
ElipticCurvePoint {
|
||||
r,
|
||||
s,
|
||||
is_infinity_point: false,
|
||||
field,
|
||||
verbose
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod test {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_eliptic_curve_new() {
|
||||
let f = GalloisField::new(7, true, None);
|
||||
let _ = ElipticCurve::new(f, 1, 2, true).expect_err("invalid ec can be created");
|
||||
let _ = ElipticCurve::new(f, -3, 3, true).expect("ec cant be created");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_check_point() {
|
||||
let f = GalloisField::new(13, true, None);
|
||||
let ec = ElipticCurve::new(f, -3, 3, true).expect("ec cant be created");
|
||||
// real points
|
||||
let p = vec![
|
||||
ElipticCurvePoint::new(0, 4, f, false),
|
||||
ElipticCurvePoint::new(0, 9, f, false),
|
||||
ElipticCurvePoint::new(1, 1, f, false),
|
||||
ElipticCurvePoint::new(1, 12, f, false),
|
||||
ElipticCurvePoint::new(4, 4, f, false),
|
||||
ElipticCurvePoint::new(4, 9, f, false),
|
||||
ElipticCurvePoint::new(5, 3, f, false),
|
||||
ElipticCurvePoint::new(5, 10, f, false),
|
||||
ElipticCurvePoint::new(7, 0, f, false),
|
||||
ElipticCurvePoint::new(8, 6, f, false),
|
||||
ElipticCurvePoint::new(9, 4, f, false),
|
||||
ElipticCurvePoint::new(9, 9, f, false),
|
||||
ElipticCurvePoint::new(11, 1, f, false),
|
||||
ElipticCurvePoint::new(11, 12, f, false),
|
||||
];
|
||||
// random values, not part of the e, fc.
|
||||
let np = vec![
|
||||
ElipticCurvePoint::new(0, 5, f, false),
|
||||
ElipticCurvePoint::new(1, 9, f, false),
|
||||
ElipticCurvePoint::new(1, 4, f, false),
|
||||
];
|
||||
for i in p {
|
||||
assert!(ec.clone().check_point(i));
|
||||
}
|
||||
for i in np {
|
||||
assert!(!ec.clone().check_point(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -62,9 +62,11 @@ impl fmt::Display for NoRootError {
|
|||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
||||
#[pyclass]
|
||||
/// represent a gallois field
|
||||
///
|
||||
/// PartialEq and Eq might behave badly when verbosity is not the same FIXME
|
||||
pub struct GalloisField {
|
||||
pub base: u128,
|
||||
pub cha: u128,
|
||||
|
|
Loading…
Reference in New Issue