#![cfg_attr(not(test), no_main)] #![cfg_attr(not(test), no_std)] #[cfg(not(test))] extern crate panic_halt; use hal::adc::{Adc, Ready, VRef, VTemp}; use hal::calibration::{VtempCal30, VtempCal130}; use hal::{pac, prelude::*, rcc::Config}; use defmt::{debug, info}; use defmt_rtt as _; // global logger #[cfg_attr(not(test), cortex_m_rt::entry)] // this is the entrypoint unless testing fn main() -> ! { let dp = pac::Peripherals::take().unwrap(); let cp = cortex_m::Peripherals::take().unwrap(); let mut rcc = dp.RCC.freeze(Config::hsi16()); let mut adc: Adc<_> = dp.ADC.constrain(&mut rcc); let mut delay = cp.SYST.delay(rcc.clocks); // NOTE: TSEN bit must be enabled for reading the temperature VTemp.enable(&mut adc); VRef.enable(&mut adc); // reference temperatures from the chips readonly memory // [Source](https://www.st.com/resource/en/datasheet/stm32l053r8.pdf), // Table 6 in Secion 3.13 "Temperature sensor" // // More and better info in the large 1000+ page sheet "Ultra-low-power // STM32L0x3 advanced Arm®-based 32-bit MCUs" (RM0367), 14.9 // // This is basically calibration data info!( "reading calibration data... If this is the last thing you hear from me something has gone terribly wrong" ); let vref_cal = hal::calibration::VrefintCal::get().read(); let tsense_cal1 = (30, VtempCal30::get().read()); let tsense_cal2 = (130, VtempCal130::get().read()); info!("tsense_cal1: {:?}", (30, tsense_cal1)); info!("tsense_cal2: {:?}", (130, tsense_cal2)); // read a few values into void, maybe this will help get that thing started for _ in 0..20 { let _ = read_temp_mv(&mut adc, 1.0); delay.delay_ms(10_u16); } let vref_actual: u16 = adc.read(&mut VRef).unwrap(); let vref_factor = vref_cal as f32 / vref_actual as f32; info!( "vref actual={} calibration={} => factor={}", vref_actual, vref_cal, vref_factor ); delay.delay_ms(10_u16); let mut temp_c; let mut temp_mv; loop { temp_mv = read_temp_mv(&mut adc, vref_factor); temp_c = temp_mv_to_c(temp_mv, tsense_cal1, tsense_cal2); info!("Temperature: {:03}mv, {:04}°C", temp_mv, temp_c as i32); delay.delay_ms(500_u16); } } fn read_temp_mv(adc: &mut Adc, vref_factor: f32) -> f32 { let bare: f32 = adc.read(&mut VTemp).expect("could not read with adc"); bare * vref_factor } // This unholy abomination is from the datasheet and does not actually look so bad if it's written // in Math instead of Rust. fn temp_mv_to_c(temp: f32, ts_cal_1: (i32, u16), ts_cal_2: (i32, u16)) -> f32 { ((ts_cal_2.0 as f32 - ts_cal_1.0 as f32) / (ts_cal_2.1 as f32 - ts_cal_1.1 as f32)) * (temp - ts_cal_1.1 as f32) + ts_cal_1.0 as f32 } #[cfg(test)] mod tests { // run these tests: cargo test --example=temperature --target=x86_64-unknown-linux-gnu use super::temp_mv_to_c; #[test] fn test_mv_to_c() { // values read out from my board as logged // after flashing and running // // First is the temperature for that calibratoin, second is the measured voltage at that // temperature let calibration_data = [(30, 673), (130, 912)]; for caldat in calibration_data { let degrees: f32 = temp_mv_to_c(caldat.1 as f32, calibration_data[0], calibration_data[1]); assert_eq!(caldat.0 as f32, degrees); dbg!(caldat); dbg!(degrees); } } }