Compare commits

...
Sign in to create a new pull request.

6 commits

4 changed files with 193 additions and 32 deletions

View file

@ -24,7 +24,8 @@ fn main() -> ! {
let mut rcc = dp.RCC.freeze(Config::hsi16()); let mut rcc = dp.RCC.freeze(Config::hsi16());
let mut delay = cp.SYST.delay(rcc.clocks); let mut delay = cp.SYST.delay(rcc.clocks);
compile_error!("The chip does not have an AES unit >:{"); // WARN: Make sure your chip has AES
panic!("The chip does not have an AES unit >:");
let aes = hal::aes::AES::new(dp.AES, &mut rcc); let aes = hal::aes::AES::new(dp.AES, &mut rcc);
let mut ecb_stream = aes.enable(<dyn hal::aes::Mode>::ecb_encrypt(), AES_KEY); let mut ecb_stream = aes.enable(<dyn hal::aes::Mode>::ecb_encrypt(), AES_KEY);
let mut encbuf: [[u8; 16]; 4] = [[0; 16]; 4]; let mut encbuf: [[u8; 16]; 4] = [[0; 16]; 4];

46
examples/blinky-external.rs Executable file
View file

@ -0,0 +1,46 @@
#![no_main]
#![no_std]
use defmt_rtt as _; // global logger
//
use panic_probe as _;
use cortex_m_rt::entry;
use hal::{pac, prelude::*, rcc::Config};
#[entry]
fn main() -> ! {
let dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
let mut rcc = dp.RCC.freeze(Config::hsi16());
let gpioa = dp.GPIOA.split(&mut rcc);
let gpiob = dp.GPIOB.split(&mut rcc);
let mut builtin_led = gpioa.pa5.into_push_pull_output();
let mut led0 = gpiob.pb5.into_push_pull_output(); // D4
let mut led1 = gpiob.pb4.into_push_pull_output(); // D5
let mut delay = cp.SYST.delay(rcc.clocks);
builtin_led.set_high().unwrap();
led0.set_high().unwrap();
led1.set_high().unwrap();
loop {
builtin_led.set_high().unwrap();
led0.set_low().unwrap();
led1.set_low().unwrap();
delay.delay_ms(100_u16);
led0.set_high().unwrap();
delay.delay_ms(100_u16);
builtin_led.set_low().unwrap();
delay.delay_ms(100_u16);
led0.set_low().unwrap();
led1.set_high().unwrap();
delay.delay_ms(100_u16);
}
}

View file

@ -1,49 +1,104 @@
#![no_main] #![cfg_attr(not(test), no_main)]
#![no_std] #![cfg_attr(not(test), no_std)]
use defmt::info; #[cfg(not(test))]
use hal::adc::{Adc, Ready, VTemp}; extern crate panic_halt;
use hal::gpio::Analog;
use hal::gpio::gpiob::PB1;
use panic_probe as _;
use defmt_rtt as _; // global logger use hal::adc::{Adc, Ready, VRef, VTemp};
use hal::calibration::{VtempCal30, VtempCal130};
use cortex_m_rt::entry;
use hal::{pac, prelude::*, rcc::Config}; use hal::{pac, prelude::*, rcc::Config};
const MAGIC_TEMPERATURE_NUMBER: f32 = 12.412122; use defmt::{debug, info};
use defmt_rtt as _; // global logger
#[entry] #[cfg_attr(not(test), cortex_m_rt::entry)] // this is the entrypoint unless testing
fn main() -> ! { fn main() -> ! {
let dp = pac::Peripherals::take().unwrap(); let dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap(); let cp = cortex_m::Peripherals::take().unwrap();
let mut rcc = dp.RCC.freeze(Config::hsi16()); let mut rcc = dp.RCC.freeze(Config::hsi16());
let mut adc = dp.ADC.constrain(&mut rcc); let mut adc: Adc<_> = dp.ADC.constrain(&mut rcc);
let gpiob = dp.GPIOB.split(&mut rcc);
let mut temp_pin = gpiob.pb1.into_analog();
// Get the delay provider.
let mut delay = cp.SYST.delay(rcc.clocks); let mut delay = cp.SYST.delay(rcc.clocks);
let mut temp; // NOTE: TSEN bit must be enabled for reading the temperature
let mut i = 0; VTemp.enable(&mut adc);
VRef.enable(&mut adc);
// reference temperatures from the chips readonly memory
// [Source](https://www.st.com/resource/en/datasheet/stm32l053r8.pdf),
// Table 6 in Secion 3.13 "Temperature sensor"
//
// More and better info in the large 1000+ page sheet "Ultra-low-power
// STM32L0x3 advanced Arm®-based 32-bit MCUs" (RM0367), 14.9
//
// This is basically calibration data
info!(
"reading calibration data... If this is the last thing you hear from me something has gone terribly wrong"
);
let vref_cal = hal::calibration::VrefintCal::get().read();
let tsense_cal1 = (30, VtempCal30::get().read());
let tsense_cal2 = (130, VtempCal130::get().read());
info!("tsense_cal1: {:?}", (30, tsense_cal1));
info!("tsense_cal2: {:?}", (130, tsense_cal2));
// read a few values into void, maybe this will help get that thing started
for _ in 0..20 {
let _ = read_temp_mv(&mut adc, 1.0);
delay.delay_ms(10_u16);
}
let vref_actual: u16 = adc.read(&mut VRef).unwrap();
let vref_factor = vref_cal as f32 / vref_actual as f32;
info!(
"vref actual={} calibration={} => factor={}",
vref_actual, vref_cal, vref_factor
);
delay.delay_ms(10_u16);
let mut temp_c;
let mut temp_mv;
loop { loop {
if i % 10_000 == 0 { temp_mv = read_temp_mv(&mut adc, vref_factor);
temp = read_temp_c(&mut temp_pin, &mut adc); temp_c = temp_mv_to_c(temp_mv, tsense_cal1, tsense_cal2);
info!("Temperature: {}", temp); info!("Temperature: {:03}mv, {:04}°C", temp_mv, temp_c as i32);
} delay.delay_ms(500_u16);
// delay.delay_ms(200_u16);
i += 1;
} }
} }
fn read_temp_c(pin: &mut PB1<Analog>, adc: &mut Adc<Ready>) -> i16 { fn read_temp_mv(adc: &mut Adc<Ready>, vref_factor: f32) -> f32 {
let v: f32 = adc let bare: f32 = adc.read(&mut VTemp).expect("could not read with adc");
.read(pin /* or maybe VTemp from the adc module? */) bare * vref_factor
.expect("could not read with adc"); }
(v / MAGIC_TEMPERATURE_NUMBER) as i16 - 50
// This unholy abomination is from the datasheet and does not actually look so bad if it's written
// in Math instead of Rust.
fn temp_mv_to_c(temp: f32, ts_cal_1: (i32, u16), ts_cal_2: (i32, u16)) -> f32 {
((ts_cal_2.0 as f32 - ts_cal_1.0 as f32) / (ts_cal_2.1 as f32 - ts_cal_1.1 as f32))
* (temp - ts_cal_1.1 as f32)
+ ts_cal_1.0 as f32
}
#[cfg(test)]
mod tests {
// run these tests: cargo test --example=temperature --target=x86_64-unknown-linux-gnu
use super::temp_mv_to_c;
#[test]
fn test_mv_to_c() {
// values read out from my board as logged
// after flashing and running
//
// First is the temperature for that calibratoin, second is the measured voltage at that
// temperature
let calibration_data = [(30, 673), (130, 912)];
for caldat in calibration_data {
let degrees: f32 =
temp_mv_to_c(caldat.1 as f32, calibration_data[0], calibration_data[1]);
assert_eq!(caldat.0 as f32, degrees);
dbg!(caldat);
dbg!(degrees);
}
}
} }

59
examples/test-on-host.rs Executable file
View file

@ -0,0 +1,59 @@
//! This example shows how a embedded program can be written that is testable on the host with
//! libtest.
//!
//! The tests can be run with:
//! ```bash
//! cargo test --example=test-on-host --target=x86_64-unknown-linux-gnu
//! ```
#![cfg_attr(not(test), no_main)]
#![no_std]
#[cfg(not(test))]
extern crate panic_halt;
use hal::{pac, prelude::*, rcc::Config};
#[cfg_attr(not(test), cortex_m_rt::entry)] // this is the entrypoint unless testing
fn main() -> ! {
let dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
// Configure the clock.
let mut rcc = dp.RCC.freeze(Config::hsi16());
// Acquire the GPIOA peripheral. This also enables the clock for GPIOA in
// the RCC register.
let gpioa = dp.GPIOA.split(&mut rcc);
// Configure PA5 as output.
let mut led = gpioa.pa5.into_push_pull_output();
// Get the delay provider.
let mut delay = cp.SYST.delay(rcc.clocks);
loop {
led.set_high().unwrap();
delay.delay_ms(500_u16);
let important_number = some_function(19);
delay.delay_ms(important_number as u16);
led.set_low().unwrap();
delay.delay_ms(500_u16);
}
}
fn some_function(num: i32) -> i32 {
num * 2
}
#[cfg(test)]
mod tests {
use crate::some_function;
#[test]
fn test_it_works() {
assert_eq!(some_function(9), 18)
}
}