== Exercise Sheet 1 - Basics === Exercise 1 @Exercise[1, 1] #block( fill: luma(230), inset: 8pt, radius: 4pt, [ Determine whether the following sequences converge. Calculate the limit in case of convergence. #set enum(numbering: "(a)") + $ a_n = (2024 (1+n+n^2))/(n(n+2023)) $ + $ a_n = sqrt(n^2+n dot b_1+b_2)-n; quad b_1,b_2 in RR $ + $ a_n = (n^4-2)/(n^2+4) + (n^3(3-n^2))/(n^3+1) $ ]) #set enum(numbering: "(a)") + $ a_n &= (2024 (1+n+n^2))/(n(n+2023)) \ &= ((2024 (1+n+n^2))/n^2)/(1+2023/n) \ &= (2024 (1/n^2+1/n+1/))/(1+2023/n) \ &= (2024/n^2+2024/n+2024)/(1+2023/n) \ => lim_(n -> infinity) a_n &= lim_(n -> infinity) (2024/n^2+2024/n+2024)/(1+2023/n) \ &= lim_(n -> infinity) 2024/1 = 2024 checkmark \ $ + $ a_n &= sqrt(n^2+n dot b_1+b_2)-n; quad b_1,b_2 in RR \ &= ((sqrt(n^2+n dot b_1+b_2)-n) (sqrt(n^2+n dot b_1+b_2)+n))/(sqrt(n^2+n dot b_1+b_2)+n) \ &= (n^2+n dot b_1+b_2 - n^2)/(sqrt(n^2+n dot b_1+b_2)+n) \ &= (n dot b_1+b_2)/(sqrt(n^2+n dot b_1+b_2)+n) \ &= (b_1+b_2/n)/((sqrt(n^2+n dot b_1+b_2)+n)/n) \ &= (b_1+b_2/n)/((sqrt(n^2+n dot b_1+b_2))/n+1) \ &= (b_1+b_2/n)/((sqrt(n^2+n dot b_1+b_2))/sqrt(n^2)+1) \ &= (b_1+b_2/n)/(sqrt(1+b_1/n+b_2/(n^2))+1) \ => lim_(n -> infinity) a_n &= lim_(n -> infinity) (b_1+b_2/n)/sqrt(1+b_1/n+b_2/(n^2))+1 \ &= b_1/(sqrt(1) + 1) = b_1/2 checkmark $ + $ a_n &= (n^4-2)/(n^2+4) + (n^3(3-n^2)) / (n^3+1) \ &= ((n^4-2)(n^3+1) + (n^3(3-n^2))(n^2+4)) / ((n^2+4)(n^3+1)) \ &= (n^7+n^4-2n^3-2 + 3n^5+12n^3-n^7-4n^5) / ((n^2+4)(n^3+1)) \ &= (-n^5+n^4+10n^3-2) / (n^5+n^2+4n^3+4) \ &= (-1+1/n+10/(n^2)-2/(n^5)) / (1+1/(n^3)+4/(n^2)+4/(n^5)) \ => lim_(n -> infinity) a_n &= lim_(n -> infinity) (-1+1/n+10/(n^2)-2/(n^5)) / (1+1/(n^3)+4/(n^2)+4/(n^5)) \ &= lim_(n -> infinity) -1/1 = 1 checkmark $ #pagebreak() === Exercise 2 @Exercise[1, 2] #block( fill: luma(230), inset: 8pt, radius: 4pt, [ Examine whether the following series converge or diverge. #set enum(numbering: "(a)") + $ A = sum_(n=1)^infinity (2^n n!)/(n^n) $ + $ A = sum_(n=1)^infinity 1/(n^n) $ ]) #set enum(numbering: "(a)") + $ A &= sum_(n=1)^infinity (2^n n!)/(n^n) \ a_n &= (2^n n!)/(n^n) #text("Ratio Test") \ => lim_(n -> infinity) a_n &= lim_(n -> infinity) abs((a_(n+1))/(a_n)) \ &= lim_(n -> infinity) abs( ( (2^(n+1) (n+1)!)/((n+1)^(n+1)) )/( (2^n n!)/(n^n) )) \ &= lim_(n -> infinity) abs( ( 2^(n+1) dot (n+1)! dot n^n )/( 2^n dot n! dot (n+1)^(n+1) )) \ &= lim_(n -> infinity) abs( ( 2 dot (n+1)! dot n^n )/( n! dot (n+1)^(n+1) )) \ &= lim_(n -> infinity) abs( ( 2 dot (n+1) dot n^n )/( (n+1)^(n+1) )) \ &= lim_(n -> infinity) abs( ( 2 dot n^n )/( (n+1)^n )) \ &= lim_(n -> infinity) abs( 2 dot ( n^n )/( (n+1)^n )) \ // &= lim_(n -> infinity) abs( 2 dot (n/(n+1))^n ) \ // &= lim_(n -> infinity) 2 dot (n/(n+1))^n \ &= lim_(n -> infinity) 2 dot (1/(1+1/n))^n \ &= 2 dot e > 1 => a_n thin #text("diverges") checkmark $ + $ a_n &= 1/(n^n) #text("Root Test") \ root(n, abs(1/(n^n))) &= 1/n -> 0 < 1 \ &=> a_n #text(" diverges") checkmark $ #pagebreak() === Exercise 3 @Exercise[1, 3] #block( fill: luma(230), inset: 8pt, radius: 4pt, [ Determine the maximal domain of the following functions as a subset of $RR$ and calculate their derivatives. #set enum(numbering: "(a)") + $ f(x) = ln((e^x) / (1+e^x)) $ + $ f(x) = ((x+1)/(x-1))^2 $ ]) #set enum(numbering: "(a)") + $ f(x) &= ln((e^x) / (1+e^x)) \ e(x) = e^x wide a(x) &= (e^x)/(1+e^x) wide b(x) = 1+e^x \ ln: RR^+ |-> RR wide e&: RR |-> RR^+ wide => f: RR |-> RR <=> DD_f = RR \ e'(x) = e(x) wide ln'(x) &= 1/x wide b'(x) = e^x \ a'(x) &= (b dot e' - b' dot e)/(b^2) space #text("Quotientenregel") \ a'(x) &= ([1+e^x] dot e^x - e^x dot e^x)/([1+e^x]^2) \ a'(x) &= (e^x + e^(2x) - e^(2x))/(1+2e^x+e^(2x)) = (e^x)/([1+e^x]^2) \ f'(x) &= ln'(a(x)) dot a'(x) \ &= 1/((e^x)/(1+e^x)) dot (e^x)/([1+e^x]^2) \ &= (1+e^x)/(e^x) dot (e^x)/([1+e^x]^2) \ &= (1+e^x)/([1+e^x]^2) \ &= 1/(1+e^x) checkmark $ + $ D_f &= RR \\ {x = 1}\ f(x) &= ((x+1)/(x-1))^2 \ a(x) = x+1 wide b(x) = x-1 quad&quad c(x) = a(x)/b(x) wide d(x) = x^2 \ a'(x) = 1 wide b'(x) &= 1 wide d'(x) = 2x \ c'(x) &= (b' dot a - b dot a')/(a^2) \ &= (x-1 - (x+1))/((x-1)^2) \ &= (-2)/((x-1)^2) \ f'(x) &= d'(c(x)) dot c'(x) \ &= 2 dot (x+1)/(x-1) dot (-2)/((x-1)^2) \ &= -4 dot (x+1)/((x-1)^3) checkmark $ #pagebreak() === Exercise 4 @Exercise[1, 4] #block( fill: luma(230), inset: 8pt, radius: 4pt, [ Calculate the following integrals using substitution: #set enum(numbering: "(a)") + $ integral (2x+7)/(x^2+7x+3) d x $ + $ integral (cos(ln(x)))/(x) d x $ ]) #set enum(numbering: "(a)") + $ A &= integral (2x+7)/(x^2+7x+3) d x \ &= integral (a'(x))/(a(x)) d x \ &= integral (a'(x))/(a(x)) d x \ &= integral 1/(a(x)) dot a'(x) d x; wide d u = a'(x) d x \ &= integral 1/u d u \ &= ln(u) = ln(x^2+7x+3) checkmark $ + $ A &= integral (cos(ln(x)))/(x) d x \ &= integral cos(ln(x)) dot 1/x d x \ &= integral cos(u) dot u' d x \ &= integral cos(u) dot d u \ &= sin(u) \ &= sin(ln(x)) \ $