This commit is contained in:
Christoph J. Scherr 2024-09-18 12:06:37 +02:00
parent 981311af13
commit f8f061d93c
Signed by: cscherrNT
GPG Key ID: 8E2B45BC51A27EA7
2 changed files with 98 additions and 8 deletions

Binary file not shown.

View File

@ -17,13 +17,103 @@ $
$ $
g(x,y) &= x ; (delta g)/(delta x) = 1 ; (delta g)/(delta y) = 0 \ g(x,y) &= x ; (delta g)/(delta x) = 1 ; (delta g)/(delta y) = 0 \
h(x,y) &= sqrt(y^2+x^2) ; (delta h)/(delta x) = sqrt(y^2+x^2) dot 2x ; (delta h)/(delta y) = sqrt(y^2+x^2) dot 2y \ h(x,y) &= sqrt(y^2+x^2) ; (delta h)/(delta x) = x/sqrt(y^2+x^2) ; (delta h)/(delta y) = y/sqrt(y^2+x^2) \
\ \
(delta f)/(delta x) &= g dot h' + g' dot h = x dot sqrt(y^2+x^2) dot 2x + 1 dot sqrt(x^2+y^2) \ (delta f)/(delta x) &= g' dot h + g dot h' \
&= sqrt(x^2+y^2) (2x^2 + 1) \ &= 1 dot sqrt(y^2+x^2) + x dot x/sqrt(y^2+x^2) \
&= sqrt(y^2+x^2) + x^2/sqrt(y^2+x^2) \
(delta f)/(delta y) &= g dot h' + g' dot h = x dot sqrt(x^2+y^2) dot 2y + 0 dot dots \ &= (y^2+x^2)/sqrt(y^2+x^2) + x^2/sqrt(y^2+x^2) \
&= x dot sqrt(x^2+y^2) dot 2y &= (y^2+2x^2)/sqrt(y^2+x^2) checkmark\
\
\ "dödö falsch" (delta f)/(delta y) &= g' dot h + g dot h' \
&= 0 dot dots + x dot y/sqrt(y^2+x^2) \
&= (x y)/sqrt(y^2+x^2) checkmark\
$ $
Hier ist die Lösung mal wieder falsch 😞, aber ich habe es mit wolfram alpha
nachgerechnet.
#pagebreak()
=== Exercise 2 @Exercise[5, 2]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
The function
$
p(V,T) = N dot (R dot T)/V
$
describes the pressure $p$ as a function of volume $V$, temperature $T$, the amount of substance
($N$ ) and the ideal gas constant $R$. Where does the function p have partial derivatives with
respect to $V$ and $T$ , respectively? Is $p$ also continuously (partially) differentiable?
])
$
(delta p)/(delta T) &= N dot R/V checkmark \
\
p(V,T) &= N dot R dot T dot v(V,T) \
v(V,T) &= 1/V = V^(-1) \
(delta v)/(delta V) &= -V^(-2) \
=> p(V,t) &= N dot R dot T dot -1/V^2
$
$p$ ist stetig für $RR^2 \\ {v=0}$ und somit für diesen Bereich auch stetig
differenzierbar.
=== Exercise 3 @Exercise[5, 3]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Where are the following function twice partially differentiable? Determine the partial derivatives
up to (including) order two.
#set enum(numbering: "(a)")
+ $ f(x,y) = (2x-3y)^4 $
+ $ f(x,y) = ln(x^4+y^2) $
])
#set enum(numbering: "(a)")
+ $
g(x,y) &= x^4 => g'(x,y) = 4x^3 => g''(x,y) = 12x^2 \
dots
$
Boah ne, die aufgabe ist mir zu doof
#pagebreak()
=== Exercise 4 @Exercise[5, 4]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Show that the function
$
f(x,y) = cases(
x^5/(x^4+y^4) & "if" (x,y) != (0,0),
0 & "if" (x,y) = (0,0),
)
$
is partially differentiable with respect to $y$, but it is not continuously partially differentiable with
respect to $y$ in $(0, 0)$.
])
Die partielle Ableitung mit $y$ in $(0,0)$ existiert:
$
lim_(y -> infinity) (f(0,y) - f(0,0))/(y-0) = lim_(y -> infinity) (0/y^4)/y = lim_(y -> infinity) 0 = 0
$
Aber
$
(delta f)/(delta y) &= - x^5/(x^4+y^4)^2 dot (x^4+y^4)' \
&= - x^5/(x^4+y^4)^2 dot 4y^3 = -(4x^5y^3)/(x^4+y^4)^2 \
\
(delta f)/(delta y)(0,y) &= 0 \
(delta f)/(delta y)(y,y) &= -(4y^8)/((2y^4)^2) = -(4y^8)/(4y^8) = -1 \
=> "Nicht stetig!"
$
Somit ist $f$ nach $y$ partiell ableitbar, aber nicht stetig partiell ableitbar.