cry
This commit is contained in:
parent
981311af13
commit
f8f061d93c
BIN
build/main.pdf
BIN
build/main.pdf
Binary file not shown.
|
@ -17,13 +17,103 @@ $
|
||||||
|
|
||||||
$
|
$
|
||||||
g(x,y) &= x ; (delta g)/(delta x) = 1 ; (delta g)/(delta y) = 0 \
|
g(x,y) &= x ; (delta g)/(delta x) = 1 ; (delta g)/(delta y) = 0 \
|
||||||
h(x,y) &= sqrt(y^2+x^2) ; (delta h)/(delta x) = sqrt(y^2+x^2) dot 2x ; (delta h)/(delta y) = sqrt(y^2+x^2) dot 2y \
|
h(x,y) &= sqrt(y^2+x^2) ; (delta h)/(delta x) = x/sqrt(y^2+x^2) ; (delta h)/(delta y) = y/sqrt(y^2+x^2) \
|
||||||
\
|
\
|
||||||
(delta f)/(delta x) &= g dot h' + g' dot h = x dot sqrt(y^2+x^2) dot 2x + 1 dot sqrt(x^2+y^2) \
|
(delta f)/(delta x) &= g' dot h + g dot h' \
|
||||||
&= sqrt(x^2+y^2) (2x^2 + 1) \
|
&= 1 dot sqrt(y^2+x^2) + x dot x/sqrt(y^2+x^2) \
|
||||||
|
&= sqrt(y^2+x^2) + x^2/sqrt(y^2+x^2) \
|
||||||
(delta f)/(delta y) &= g dot h' + g' dot h = x dot sqrt(x^2+y^2) dot 2y + 0 dot dots \
|
&= (y^2+x^2)/sqrt(y^2+x^2) + x^2/sqrt(y^2+x^2) \
|
||||||
&= x dot sqrt(x^2+y^2) dot 2y
|
&= (y^2+2x^2)/sqrt(y^2+x^2) checkmark\
|
||||||
|
\
|
||||||
\ "dödö falsch"
|
(delta f)/(delta y) &= g' dot h + g dot h' \
|
||||||
|
&= 0 dot dots + x dot y/sqrt(y^2+x^2) \
|
||||||
|
&= (x y)/sqrt(y^2+x^2) checkmark\
|
||||||
$
|
$
|
||||||
|
|
||||||
|
Hier ist die Lösung mal wieder falsch 😞, aber ich habe es mit wolfram alpha
|
||||||
|
nachgerechnet.
|
||||||
|
|
||||||
|
#pagebreak()
|
||||||
|
=== Exercise 2 @Exercise[5, 2]
|
||||||
|
#block(
|
||||||
|
fill: luma(230),
|
||||||
|
inset: 8pt,
|
||||||
|
radius: 4pt,
|
||||||
|
[
|
||||||
|
The function
|
||||||
|
$
|
||||||
|
p(V,T) = N dot (R dot T)/V
|
||||||
|
$
|
||||||
|
describes the pressure $p$ as a function of volume $V$, temperature $T$, the amount of substance
|
||||||
|
($N$ ) and the ideal gas constant $R$. Where does the function p have partial derivatives with
|
||||||
|
respect to $V$ and $T$ , respectively? Is $p$ also continuously (partially) differentiable?
|
||||||
|
])
|
||||||
|
|
||||||
|
$
|
||||||
|
(delta p)/(delta T) &= N dot R/V checkmark \
|
||||||
|
\
|
||||||
|
p(V,T) &= N dot R dot T dot v(V,T) \
|
||||||
|
v(V,T) &= 1/V = V^(-1) \
|
||||||
|
(delta v)/(delta V) &= -V^(-2) \
|
||||||
|
=> p(V,t) &= N dot R dot T dot -1/V^2
|
||||||
|
$
|
||||||
|
|
||||||
|
$p$ ist stetig für $RR^2 \\ {v=0}$ und somit für diesen Bereich auch stetig
|
||||||
|
differenzierbar.
|
||||||
|
|
||||||
|
=== Exercise 3 @Exercise[5, 3]
|
||||||
|
#block(
|
||||||
|
fill: luma(230),
|
||||||
|
inset: 8pt,
|
||||||
|
radius: 4pt,
|
||||||
|
[
|
||||||
|
Where are the following function twice partially differentiable? Determine the partial derivatives
|
||||||
|
up to (including) order two.
|
||||||
|
#set enum(numbering: "(a)")
|
||||||
|
+ $ f(x,y) = (2x-3y)^4 $
|
||||||
|
+ $ f(x,y) = ln(x^4+y^2) $
|
||||||
|
])
|
||||||
|
|
||||||
|
#set enum(numbering: "(a)")
|
||||||
|
+ $
|
||||||
|
g(x,y) &= x^4 => g'(x,y) = 4x^3 => g''(x,y) = 12x^2 \
|
||||||
|
dots
|
||||||
|
$
|
||||||
|
|
||||||
|
Boah ne, die aufgabe ist mir zu doof
|
||||||
|
|
||||||
|
#pagebreak()
|
||||||
|
=== Exercise 4 @Exercise[5, 4]
|
||||||
|
#block(
|
||||||
|
fill: luma(230),
|
||||||
|
inset: 8pt,
|
||||||
|
radius: 4pt,
|
||||||
|
[
|
||||||
|
Show that the function
|
||||||
|
|
||||||
|
$
|
||||||
|
f(x,y) = cases(
|
||||||
|
x^5/(x^4+y^4) & "if" (x,y) != (0,0),
|
||||||
|
0 & "if" (x,y) = (0,0),
|
||||||
|
)
|
||||||
|
$
|
||||||
|
is partially differentiable with respect to $y$, but it is not continuously partially differentiable with
|
||||||
|
respect to $y$ in $(0, 0)$.
|
||||||
|
])
|
||||||
|
|
||||||
|
Die partielle Ableitung mit $y$ in $(0,0)$ existiert:
|
||||||
|
|
||||||
|
$
|
||||||
|
lim_(y -> infinity) (f(0,y) - f(0,0))/(y-0) = lim_(y -> infinity) (0/y^4)/y = lim_(y -> infinity) 0 = 0
|
||||||
|
$
|
||||||
|
Aber
|
||||||
|
$
|
||||||
|
(delta f)/(delta y) &= - x^5/(x^4+y^4)^2 dot (x^4+y^4)' \
|
||||||
|
&= - x^5/(x^4+y^4)^2 dot 4y^3 = -(4x^5y^3)/(x^4+y^4)^2 \
|
||||||
|
\
|
||||||
|
(delta f)/(delta y)(0,y) &= 0 \
|
||||||
|
(delta f)/(delta y)(y,y) &= -(4y^8)/((2y^4)^2) = -(4y^8)/(4y^8) = -1 \
|
||||||
|
=> "Nicht stetig!"
|
||||||
|
$
|
||||||
|
|
||||||
|
Somit ist $f$ nach $y$ partiell ableitbar, aber nicht stetig partiell ableitbar.
|
||||||
|
|
Loading…
Reference in New Issue