numbers
This commit is contained in:
parent
4681ed7a2b
commit
dae2b4f527
BIN
build/main.pdf
BIN
build/main.pdf
Binary file not shown.
|
@ -51,3 +51,43 @@ $
|
||||||
&= lim_(n -> infinity) (-1+1/n+10/(n^2)-2/(n^5)) / (1+1/(n^3)+4/(n^2)+4/(n^5)) \
|
&= lim_(n -> infinity) (-1+1/n+10/(n^2)-2/(n^5)) / (1+1/(n^3)+4/(n^2)+4/(n^5)) \
|
||||||
&= lim_(n -> infinity) -1/1 = 1 checkmark
|
&= lim_(n -> infinity) -1/1 = 1 checkmark
|
||||||
$
|
$
|
||||||
|
|
||||||
|
#pagebreak()
|
||||||
|
|
||||||
|
=== Exercise 2 @Exercise[1, 2]
|
||||||
|
|
||||||
|
#block(
|
||||||
|
fill: luma(230),
|
||||||
|
inset: 8pt,
|
||||||
|
radius: 4pt,
|
||||||
|
[
|
||||||
|
Examine whether the following series converge or diverge.
|
||||||
|
|
||||||
|
#set enum(numbering: "(a)")
|
||||||
|
+ $ A = sum_(n=1)^infinity (2^n n!)/(n^n) $
|
||||||
|
+ $ A = sum_(n=1)^infinity 1/(n^n) $
|
||||||
|
])
|
||||||
|
|
||||||
|
#set enum(numbering: "(a)")
|
||||||
|
+ $
|
||||||
|
A &= sum_(n=1)^infinity (2^n n!)/(n^n) \
|
||||||
|
a_n &= (2^n n!)/(n^n) #text("Ratio Test") \
|
||||||
|
=> lim_(n -> infinity) a_n
|
||||||
|
&= lim_(n -> infinity) abs((a_(n+1))/(a_n)) \
|
||||||
|
&= lim_(n -> infinity) abs( ( (2^(n+1) (n+1)!)/((n+1)^(n+1)) )/( (2^n n!)/(n^n) )) \
|
||||||
|
&= lim_(n -> infinity) abs( ( 2^(n+1) dot (n+1)! dot n^n )/( 2^n dot n! dot (n+1)^(n+1) )) \
|
||||||
|
&= lim_(n -> infinity) abs( ( 2 dot (n+1)! dot n^n )/( n! dot (n+1)^(n+1) )) \
|
||||||
|
&= lim_(n -> infinity) abs( ( 2 dot (n+1) dot n^n )/( (n+1)^(n+1) )) \
|
||||||
|
&= lim_(n -> infinity) abs( ( 2 dot n^n )/( (n+1)^n )) \
|
||||||
|
&= lim_(n -> infinity) abs( 2 dot ( n^n )/( (n+1)^n )) \
|
||||||
|
// &= lim_(n -> infinity) abs( 2 dot (n/(n+1))^n ) \
|
||||||
|
// &= lim_(n -> infinity) 2 dot (n/(n+1))^n \
|
||||||
|
&= lim_(n -> infinity) 2 dot (1/(1+1/n))^n \
|
||||||
|
&= 2 dot e > 1 => a_n thin #text("diverges") checkmark
|
||||||
|
$
|
||||||
|
|
||||||
|
+ $
|
||||||
|
a_n &= 1/(n^n) #text("Root Test") \
|
||||||
|
root(n, abs(1/(n^n))) &= 1/n -> 0 < 1 \
|
||||||
|
&=> a_n #text(" diverges") checkmark
|
||||||
|
$
|
||||||
|
|
Loading…
Reference in New Issue