brrrrrrrrrrrrrrr

This commit is contained in:
Christoph J. Scherr 2024-09-16 16:34:41 +02:00
parent 694be5fc75
commit 89a4f3b8ff
Signed by: cscherrNT
GPG Key ID: 8E2B45BC51A27EA7
3 changed files with 139 additions and 0 deletions

Binary file not shown.

137
src/exercise/4.typ Normal file
View File

@ -0,0 +1,137 @@
== Exercise Sheet 4 - Sequences, Limits & Continuity
=== Exercise 1 @Exercise[4, 1]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Is the sequence
$
a_m = (m/(m^2+2m-8) , (m^2+7)/((m+1)(m-1)))
$
convergent or divergent? If it converges, determine its limit.
])
$
b_m &= m/(m^2+2m-8) \
&= 1/(m+2-8/m) \
lim_(m -> infinity) b_m &= 1/(m+2-8/m) = 1/(m+2) = 0 \
c_m &= (m^2+7)/((m+1)(m-1)) \
&= (m^2+7)/(m^2-1) \
lim_(m -> infinity) c_m &= (m^2+7)/(m^2-1) = 1/1 = 1 \
=> a_m &= (b_m , c_m) => lim_(m -> infinity) a_m = (0, 1) checkmark
$
#pagebreak()
=== Exercise 2 @Exercise[4, 2]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Is the sequence
$
a_m = (sqrt(m+10) - sqrt(m) , sqrt(m+ sqrt(m)) - sqrt(m))
$
convergent or divergent? If it converges, determine its limit.
])
$
b_m &= sqrt(m + 10) - sqrt(m) \
&= ((sqrt(m + 10) - sqrt(m))(sqrt(m + 10) + sqrt(m)))/(sqrt(m + 10) + sqrt(m)) \
&= (m+10 - m)/(sqrt(m + 10) + sqrt(m)) = 10/(sqrt(m + 10) + sqrt(m)) \
lim_(m -> infinity)
b_m &= 10/(sqrt(m + 10) + sqrt(m)) = 0 \ \
c_m &= sqrt(m+ sqrt(m)) - sqrt(m) \
&= ((sqrt(m+ sqrt(m)) - sqrt(m))(sqrt(m+ sqrt(m)) + sqrt(m)))/(sqrt(m+ sqrt(m)) + sqrt(m)) \
&= (m+ sqrt(m) -m)/(sqrt(m+ sqrt(m)) + sqrt(m)) = sqrt(m)/(sqrt(m+ sqrt(m)) + sqrt(m)) \
&= 1/(sqrt(m +sqrt(m))/sqrt(m) + 1) = 1/(sqrt((m +sqrt(m))/m) + 1) \
&= 1/(sqrt(1+1/sqrt(m)) + 1) \
lim_(m -> infinity)
c_m &= 1/(sqrt(1+1/sqrt(m)) + 1) = 1/2 \
=> a_m &= (b_m , c_m) => lim_(m -> infinity) a_m = (0, 1/2) checkmark
$
#pagebreak()
=== Exercise 3 @Exercise[4, 3]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Investigate whether the real function
$
f: RR^2 -> RR \
(x_1, x_2) |-> cases(
(x_1^4 - x_2^4)/(x_1^2 + x_2^2)
quad &"for" (x_1, x_2) &!= (0,0),
0 quad &"for" (x_1, x_2) &= (0,0),
)
$
is continuous in $(0, 0)$.
])
$
"let" x &= x_1; y = x_2 \
f(x,y) &= (x^4 - y^4)/(x^2 + y^2) \
&= ((x^2-y^2)(x^2+y^2))/(x^2 + y^2) \
&= x^2-y^2 -> 0 "für" (x,y) -> (0,0) \
&"Überall stetig" checkmark
$
#pagebreak()
=== Exercise 4 @Exercise[4, 4]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Investigate whether the real function
$
f: RR^2 -> RR \
(x_1, x_2) |-> cases(
(x_1^3 + x_2^3)/(x_1^2 + x_2^2)
quad &"for" (x_1, x_2) &!= (0,0),
0 quad &"for" (x_1, x_2) &= (0,0),
)
$
is continuous in $(0, 0)$. Hint: Use polar coordinates.
])
$
"let" x &= x_1; y = x_2 \
x &= r cos(phi); y = r sin(phi) \
f(x,y) &= (r^3 cos(phi)^3 + r^3 sin(phi)^3)/(x^2 + y^2) \
&= r ( cos(phi)^3 + sin(phi)^3 ) \
lim_(r -> 0)
f(x,y) &= r ( cos(phi)^3 + sin(phi)^3 ) = 0 checkmark
$
#pagebreak()
=== Exercise 5 @Exercise[4, 5]
#block(
fill: luma(230),
inset: 8pt,
radius: 4pt,
[
Investigate whether the real function
$
f: RR^2 -> RR \
(x,y) |-> e^(x-y^4) dot sin((x-x^2y^3)/(x^2+5)) \
$
is continuous on $RR$.
])
$x^2 + 5 = 0$ hat keine Lösung in $RR$. Die Funktion $f$ ist stetig, weil sie
stetige Funktionen auf stetige Weise kombiniert. (müsste die Funtkionen zerlegen,
aber kein Bock.) $checkmark$

View File

@ -3,3 +3,5 @@
#include "2.typ" #include "2.typ"
#pagebreak() #pagebreak()
#include "3.typ" #include "3.typ"
#pagebreak()
#include "4.typ"