parent
70855d1642
commit
899af7fcbc
BIN
build/main.pdf
BIN
build/main.pdf
Binary file not shown.
|
@ -38,7 +38,6 @@
|
|||
|
||||
#set figure(numbering:"1.1")
|
||||
|
||||
|
||||
// Preabmle
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
|
|
@ -270,9 +270,9 @@ cos(x)^2sin(x^2)x]$, das ist aber falsch, da die Vorzeichen, die beim Ableiten
|
|||
vom $cos$ entstehen, fehlen.
|
||||
|
||||
|
||||
=== Funktionen, Stetigkeit, Ableitungen
|
||||
=== Grenzwerte und Integration
|
||||
|
||||
==== Ex: Grenzwert mit l'Hôpital @Vorlesung[1, P. 59]
|
||||
==== Ex: Grenzwert mit l'Hôpital @Vorlesung[1, P. 69]
|
||||
|
||||
#quote()[
|
||||
Derive the limit
|
||||
|
@ -281,8 +281,56 @@ vom $cos$ entstehen, fehlen.
|
|||
]
|
||||
|
||||
$
|
||||
L &= lim_(x->infinity) (x^2e^x)/(e^x-1)^2 = lim_(x->infinity) f(x) \
|
||||
f(x) &= (x^2e^x)/(e^x-1)^2 = g(x)/h(x) \
|
||||
g(x) &= x^2e^x => g'(x) = dots \
|
||||
h(x) &= (e^x-1)^2 => h'(x) = dots \
|
||||
L &= lim_(x->infinity) (x^2e^x)/(e^x-1)^2 = lim_(x->infinity) (g(x))/(h(x)) =^! lim_(x->infinity) (g'(x))/(h'(x)) \
|
||||
g(x) &= x^2e^x => g'(x) = (x^2)' dot e^x + x^2 dot e^x = 2 x e^x+x^2e^x = e^x dot (x^2+2x) \
|
||||
h(x) &= (e^x-1)^2 => h'(x) = 2(e^x-1) dot e^x = 2e^x dot (e^x-1) \
|
||||
=> L &= lim_(x->infinity) (e^x dot (x^2+2x))/(2e^x dot (e^x-1)) =lim_(x->infinity) (x^2+2x)/(2e^x -2) =lim_(x->infinity) (x^2+x)/(e^x -1) \
|
||||
&= lim_(x->infinity) (x+1)/(e^x-1) = lim_(x->infinity) (1)/(e^x) = 0 checkmark
|
||||
$
|
||||
|
||||
==== Ex: Integration mit Substitutionsverfahren @Vorlesung[1, P. 76]
|
||||
|
||||
#quote()[
|
||||
Calculate the integral
|
||||
|
||||
$ A = integral^(pi/2)_0 cos(x) dot e^(sin(x)) d x $
|
||||
|
||||
using substitution
|
||||
]
|
||||
|
||||
$
|
||||
A &= integral^(pi/2)_0 cos(x) dot e^(sin(x)) d x = integral^(pi/2)_0 u'(x) dot e(u(x)) d x \
|
||||
u(x) &= sin(x) ; u'(x) = cos(x) ; e(x) = e^x ; e'(x) = e^x \
|
||||
=> A &= integral^(u(pi/2))_(u(0)) e(t) d t \
|
||||
&= integral^1_0 e(t) d t = e^1 - e^0 = e-1 checkmark
|
||||
$
|
||||
|
||||
#pagebreak()
|
||||
|
||||
==== Ex: Integration mit partieller Integration @Vorlesung[1, P. 76]
|
||||
|
||||
#quote()[
|
||||
Calculate the integral
|
||||
|
||||
$ A = integral x sin(x) d x $
|
||||
|
||||
using partial integration
|
||||
]
|
||||
|
||||
$
|
||||
A &= integral x sin(x) d x = integral u(x) dot v'(x) \
|
||||
u(x) &= x ; u'(x) = 1 ; v(x) = -cos(x) ; v'(x) = sin(x) \
|
||||
=> A &= [u(x) dot v(x)] - integral u'(x) dot v(x) d x \
|
||||
&= x dot (-cos(x)) - integral 1 dot (-cos(x)) d x \
|
||||
&= x dot (-cos(x)) - (-sin(x)) \
|
||||
& = sin(x) - x cos(x) checkmark
|
||||
$ <v1-partint>
|
||||
|
||||
- Es ist sehr verwirrend für mich, wenn die Integrationsgrenzen fehlen 😕
|
||||
|
||||
An dieser Stelle stimmt die Lösung in @Vorlesung leider wieder nicht. Ich habe
|
||||
das Ergebnis wie in <v1-partint> maschinell überprüfen lassen, und es war
|
||||
korrekt. Lauf @Vorlesung wäre das Ergebnis:
|
||||
|
||||
$ A = integral x sin(x) d x = x(-cos(x)) - integral sin(x) d x = cos(x)(1-x)
|
||||
" "#emoji.crossmark $
|
||||
|
|
Loading…
Reference in New Issue