viele krasse sachen zur VL1
This commit is contained in:
parent
10ae405faf
commit
38b0be3080
Binary file not shown.
59
src/main.typ
59
src/main.typ
|
@ -1,24 +1,30 @@
|
|||
#import "@preview/charged-ieee:0.1.0": ieee
|
||||
#let title = [ Multivariable Analysis an der DHBW weil ich durchgefallen bin (Scheiße) ]
|
||||
#let abstract = [
|
||||
Notizen zu Vorlesungen und Lösungen von Aufgaben bezüglich multivariabler
|
||||
Analysis and der DHBW Mannheim.
|
||||
]
|
||||
|
||||
#show: ieee.with(
|
||||
title: [Multivariable Analysis an der DHBW weil ich durchgefallen bin (Scheiße)],
|
||||
#import "@preview/arkheion:0.1.0": arkheion, arkheion-appendices
|
||||
|
||||
#show: arkheion.with(
|
||||
title: title,
|
||||
authors: (
|
||||
(
|
||||
name: "Christoph J. Scherr",
|
||||
department: [TINF22CS2 (Cybersecurity at DHBW)],
|
||||
organization: [NewTec GmbH],
|
||||
location: [Mannheim, Germany],
|
||||
email: "contact@cscherr,de"
|
||||
),
|
||||
(name: "Christoph J. Scherr", email: "contact@cscherr.de", affiliation: "NewTec GmbH"),
|
||||
),
|
||||
index-terms: ("Math", "Undergrad"),
|
||||
bibliography: bibliography("refs.bib"),
|
||||
// Insert your abstract after the colon, wrapped in brackets.
|
||||
// Example: `abstract: [This is my abstract...]`
|
||||
abstract: abstract,
|
||||
keywords: ("Undergrad", "Analysis", "Mathmatics"),
|
||||
date: datetime.today().display(),
|
||||
)
|
||||
|
||||
#set text(lang: "de")
|
||||
|
||||
// Justified paragraphs
|
||||
#set par(justify: true, first-line-indent: 0pt)
|
||||
#set par(
|
||||
justify: true,
|
||||
leading: 0.52em,
|
||||
)
|
||||
|
||||
// more space between pars
|
||||
#show par: set block(spacing: 2em)
|
||||
|
@ -26,10 +32,22 @@
|
|||
// Put this here to avoid affecting the title
|
||||
#show link: underline
|
||||
|
||||
// Preamble
|
||||
|
||||
// headcolor
|
||||
#let headcolor = rgb("80b3ff")
|
||||
|
||||
#set figure(numbering:"1.1")
|
||||
|
||||
|
||||
// Preabmle
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#outline()
|
||||
#v(8em)
|
||||
|
||||
#outline(depth: 3)
|
||||
#outline(title: "Abbildungen", target: figure)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
// Content
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -41,17 +59,26 @@ brauchte einfach mehr Zeit. Dieses Dokument wird meine Notizen und Lösungen
|
|||
zu allen Vorlesungen und Übungen enthalten.
|
||||
|
||||
Dieses Dokument bezieht sich vor allem auf Vorlesung#cite(<Vorlesung>) und Übungen#cite(<Exercise>).
|
||||
Diese sind auf Englisch verfasst, dieses Dokument wird jedoch auf Deutsch sein.
|
||||
Diese sind auf Englisch
|
||||
|
||||
|
||||
= Methoden
|
||||
|
||||
Erstmal machen und gucken dann.
|
||||
|
||||
#pagebreak()
|
||||
= Vorlesungen
|
||||
|
||||
#include "./vorlesungen/index.typ"
|
||||
|
||||
#pagebreak()
|
||||
= Übungen
|
||||
|
||||
#include "./exercise/index.typ"
|
||||
|
||||
|
||||
// Postabmle
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#pagebreak()
|
||||
|
||||
#bibliography("refs.bib")
|
||||
|
|
|
@ -9,3 +9,10 @@
|
|||
title = "Applied Mathematics - Multivariable analysis (Übungen)",
|
||||
year = "2024",
|
||||
}
|
||||
|
||||
@online{MatheNichtFreaks,
|
||||
url = "
|
||||
https://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_Teleskopsumme_und_Teleskopreihe
|
||||
",
|
||||
urldate = "2024-07-18",
|
||||
}
|
||||
|
|
|
@ -0,0 +1,214 @@
|
|||
== Basics & Outlook @Vorlesung[Foliensatz 1]
|
||||
|
||||
- Größtenteils Wiederholung von Analysis
|
||||
|
||||
=== Konvergenz von Folgen
|
||||
|
||||
#v(2em)
|
||||
|
||||
#figure([
|
||||
+ Ist die Folge von einem bestimmten Typen?
|
||||
- Harmonische Reihe ($1/n$)
|
||||
- Alternierende Reihe ($(-1)^n$)
|
||||
+ Hilft die 3. Bionische Formel? ($(a+b)(a-b)$) (heiß´t glaub ich auch
|
||||
quadratische Ergänzung)
|
||||
+ Sandwich Theorem ($a_n <= b_n <= c_n => a <= b <= c$)
|
||||
+ Gibt es einen Maximalwert?
|
||||
+ Ist sie monoton: ($a_(n+1)/a_n <= 1 "oder" >= 1$)
|
||||
], caption: "Algorithmus zum Test auf Konvergenz bei Folgen") <alg:folge>
|
||||
|
||||
==== Ex: Convergence of Sequences @Vorlesung[1, P. 11]
|
||||
|
||||
#quote()[
|
||||
Does the sequence $a_n; n in NN$
|
||||
|
||||
$ a_n = ((n+1)^2 + 3 dot n(n^2 -1)) / (2 dot (n+2)^3) $
|
||||
|
||||
converge? If it converges, what is the limit?
|
||||
]
|
||||
|
||||
$
|
||||
a_n &= ((n+1)^2 + 3 dot n(n^2 -1)) / (2 dot (n+2)^3)) \
|
||||
=> lim_(n -> infinity) a_n &= lim_(n -> infinity) ((n+1)^2 + 3 dot n(n^2 -1)) / (2 dot (n+2)^3) \
|
||||
&= lim_(n -> infinity) (3 n^3) / (2n^3) \
|
||||
&= 3 / 2 checkmark
|
||||
$
|
||||
|
||||
==== Ex: Convergence of Sequences @Vorlesung[1, P. 13]
|
||||
|
||||
#quote()[
|
||||
Does the sequence $a_n; n in NN$
|
||||
|
||||
$ a_n = sqrt(n^2+n)-n $
|
||||
|
||||
converge? If it converges, what is the limit?
|
||||
]
|
||||
|
||||
$
|
||||
a_n &= sqrt(n^2+n)-n \
|
||||
=> lim_(n -> infinity) a_n &= lim_(n -> infinity) sqrt(n^2+n)-n \
|
||||
&= lim_(n -> infinity) sqrt(n^2+n)-n \
|
||||
&> lim_(n -> infinity) sqrt(n^2)-n = 0 \
|
||||
lim_(n -> infinity) a_n &= lim_(n -> infinity) sqrt(n^2+n)-n \
|
||||
&= lim_(n -> infinity) (sqrt(n^2+n)-n) dot (sqrt(n^2+n)+n)/(sqrt(n^2+n)+n) \
|
||||
&= lim_(n -> infinity) ((sqrt(n^2+n)-n) dot (sqrt(n^2+n)+n))/(sqrt(n^2+n)+n) \
|
||||
&= lim_(n -> infinity) (n^2+n-n^2)/(sqrt(n^2+n)+n) \
|
||||
&= lim_(n -> infinity) (n)/(sqrt(n^2+n)+n) |:n\
|
||||
&= lim_(n -> infinity) (1)/(sqrt(n^2+n)/n +1)\
|
||||
&= lim_(n -> infinity) (1)/(sqrt(n^2+n)/sqrt(n^2) +1)\
|
||||
&= lim_(n -> infinity) (1)/(sqrt((n^2+n)/n^2) +1)\
|
||||
&= lim_(n -> infinity) (1)/(sqrt(1+1/n) +1) = 1/2 checkmark
|
||||
$
|
||||
|
||||
==== Ex: Convergence of Sequences @Vorlesung[1, P. 15]
|
||||
|
||||
#quote()[
|
||||
Does the sequence $a_n; n in NN$
|
||||
|
||||
$ a_n = n!/n^n $
|
||||
|
||||
converge? If it converges, what is the limit?
|
||||
]
|
||||
|
||||
$
|
||||
a_n &= n!/n^n \
|
||||
=> lim_(n -> infinity) a_n &= lim_(n -> infinity) n!/n^n \
|
||||
&= ((n-1)(n-2)dots)/n^n \
|
||||
=> n! &<= n^(n-1) \
|
||||
=> a_n &<= n^(n-1)/n^n = 1/n --> 0 \
|
||||
=> lim_(n -> infinity) a_n &= 0
|
||||
$
|
||||
|
||||
=== Konvergenz von Reihen
|
||||
|
||||
#v(2em)
|
||||
|
||||
#figure([
|
||||
+ Addiert die Reihe eine Nullfolge?
|
||||
+ Ist die Reihe von einem bestimmten Typen?
|
||||
- Geometrische Reihe
|
||||
- Teleskop-Reihe
|
||||
+ Addiert die Reihe eine alternierende Folge?
|
||||
+ Ratio test (Besonders bei $x!$ und $x^n$)
|
||||
+ Root test (Besonders bei $x^n$)
|
||||
], caption: "Algorithmus zum Test auf Konvergenz bei Reihen") <alg:reihe>
|
||||
|
||||
==== Ex: Convergence of Serieses @Vorlesung[1, P. 22]
|
||||
|
||||
#quote()[
|
||||
Does the series
|
||||
|
||||
$ S = sum^(infinity)_(n=0) (2n-1)/(3n-1) $
|
||||
|
||||
converge?
|
||||
]
|
||||
|
||||
$
|
||||
lim_(n -> infinity) (2n-1)/(3n-1) = 2/3 != 0 \
|
||||
=> "Die Reihe konvergiert nicht, weil " (2n-1)/(3n-1) " keine Nullfolge ist." checkmark
|
||||
$
|
||||
|
||||
#pagebreak()
|
||||
|
||||
==== Ex: Convergence of Serieses @Vorlesung[1, P. 26]
|
||||
|
||||
#quote()[
|
||||
Does the series
|
||||
|
||||
$ S = sum^(infinity)_(n=0) (2)/(3^n) $
|
||||
|
||||
converge?
|
||||
]
|
||||
|
||||
$
|
||||
S &= sum^(infinity)_(n=0) (2)/(3^n) \
|
||||
&= 2 dot sum^(infinity)_(n=0) (1)/(3^n) \
|
||||
&= 2 dot sum^(infinity)_(n=0) (1/3)^n ; 1/3 > 1 \
|
||||
&=> S " ist eine geometrische Reihe!" \
|
||||
S &= 2 dot 1/(1- 1/3) = 2 dot 1/(2/3) = 2 dot 3/2 = 3 checkmark
|
||||
$
|
||||
|
||||
==== Ex: Convergence of Serieses @Vorlesung[1, P. 29]
|
||||
|
||||
#quote()[
|
||||
Does the series
|
||||
|
||||
$ S = sum^(infinity)_(n=0) (1)/(n(n+1)) $
|
||||
|
||||
converge?
|
||||
]
|
||||
|
||||
$
|
||||
S &= sum^(infinity)_(n=0) (1)/(n(n+1)) \
|
||||
b_n &= (1)/(n(n+1)) \
|
||||
&= (1+(n-n))/(n(n+1)) \
|
||||
&= ((1+n)-n)/(n(n+1)) \
|
||||
&= ((n+1))/(n(n+1)) - (n)/(n(n+1)) \
|
||||
&= (1)/(n) - (1)/(n+1) \
|
||||
"mit " a_n = 1/n &: b_n = a_n - a_(n+1) => "Wir können das Teleskopkriterium anwenden" \
|
||||
(S &= a_0 = 1/1 = 1 checkmark) \
|
||||
S &= a_1 = 1/1 = 1 checkmark \
|
||||
$
|
||||
|
||||
Diese Partialbruchzerlegung hätte ich nicht ohne
|
||||
@MatheNichtFreaks[Partialbruchzerlegung] gefunden. Aus irgendeinem Grund
|
||||
ist $a_0 = 1/1$ in der Vorlesung@Vorlesung, anstatt $1/0$. Demnach müsste
|
||||
z.B. $a_1=1/2$ sein. Das $n$ in $a_n$ indiziert also eine Zahl aus $NN$
|
||||
und wird nicht direkt eingesetzt.
|
||||
|
||||
Ich finde das ist inkonsistent, deshalb verwende ich $a_1 => n=1$, und $a_0 => n=0$.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
==== Ex: Convergence of Serieses @Vorlesung[1, P. 32]
|
||||
|
||||
#quote()[
|
||||
Does the series
|
||||
|
||||
$ S = sum^(infinity)_(n=0) (n)/(2^n) $
|
||||
|
||||
converge?
|
||||
]
|
||||
|
||||
$
|
||||
lim_(n->infinity) abs((a_(n+1)/a_n)) &= lim_(n->infinity) abs(((n+1)/(2^(n+1)))/(n/(2^n))) \
|
||||
&= lim_(n->infinity) abs(((n+1) dot 2^n)/(n dot 2^(n+1))) \
|
||||
&= lim_(n->infinity) abs(((n+1))/n) dot abs((2^n)/(2^(n+1))) \
|
||||
&= lim_(n->infinity) abs(((n+1))/n) dot 1/2 \
|
||||
&= lim_(n->infinity) abs((n)/n) dot 1/2 \
|
||||
&= 1/2 checkmark
|
||||
$
|
||||
|
||||
==== Ex: Convergence of Serieses @Vorlesung[1, P. 35]
|
||||
|
||||
#quote()[
|
||||
Does the series
|
||||
|
||||
$ S = sum^(infinity)_(n=0) (2^n)/((n+1)^n) $
|
||||
|
||||
converge?
|
||||
]
|
||||
|
||||
$
|
||||
&lim_(n->infinity) root(n, abs((2^n)/((n+1)^n))) "(Wurzelkriterium)"\
|
||||
= &lim_(n->infinity) root(n, abs(((2)/((n+1)))^n)) \
|
||||
= &lim_(n->infinity) (2)/((n+1)) = 0 < 1 => "S ist konvergent" checkmark
|
||||
$
|
||||
|
||||
=== Funktionen
|
||||
|
||||
==== Ex: Convergence of Serieses @Vorlesung[1, P. 35]
|
||||
|
||||
#quote()[
|
||||
Does the series
|
||||
|
||||
$ S = sum^(infinity)_(n=0) (2^n)/((n+1)^n) $
|
||||
|
||||
converge?
|
||||
]
|
||||
|
||||
$
|
||||
&lim_(n->infinity) root(n, abs((2^n)/((n+1)^n))) "(Wurzelkriterium)"\
|
||||
= &lim_(n->infinity) root(n, abs(((2)/((n+1)))^n)) \
|
||||
= &lim_(n->infinity) (2)/((n+1)) = 0 < 1 => "S ist konvergent" checkmark
|
||||
$
|
|
@ -1,20 +1 @@
|
|||
== Basics & Outlook @Vorlesung[Foliensatz 1]
|
||||
|
||||
- Größtenteils Wiederholung von Analysis
|
||||
|
||||
=== Ex: Convergence @Vorlesung[P. 11]
|
||||
|
||||
#quote(attribution: [@Vorlesung[P. 11]])[
|
||||
Does the sequence $a_n; n in NN$
|
||||
|
||||
$ a_n = ((n+1)^2 + 3 dot n(n^2 -1)) / (2 dot (n+2)^3) $
|
||||
|
||||
converge? If it converges, what is the limit?
|
||||
]
|
||||
|
||||
$
|
||||
a_n &= ((n+1)^2 + 3 dot n(n^2 -1)) / (2 dot (n+2)^3)) \
|
||||
=> lim_(n -> infinity) a_n &= lim_(n -> infinity) ((n+1)^2 + 3 dot n(n^2 -1)) / (2 dot (n+2)^3) \
|
||||
&= lim_(n -> infinity) (3 n^3) / (2n^3) \
|
||||
&= 3 / 2 checkmark
|
||||
$
|
||||
#include "1.typ"
|
||||
|
|
Loading…
Reference in New Issue