211 lines
4.7 KiB
Text
211 lines
4.7 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 35,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from math import e\n",
|
|
"from numpy.typing import NDArray as array\n",
|
|
"from numpy import float64 as float"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def sigmoid(z):\n",
|
|
" return 1 / (1 + e ** (-z))\n",
|
|
"\n",
|
|
"\n",
|
|
"def ht(weights, x):\n",
|
|
" return g(weights.T @ x)\n",
|
|
"\n",
|
|
"\n",
|
|
"def g(x):\n",
|
|
" return sigmoid(x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 27,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.9999546021312976\n",
|
|
"4.539786870243442e-05\n",
|
|
"9.357622968839314e-14\n",
|
|
"4.539786870243442e-05\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# and gate?\n",
|
|
"weights_and = np.array([-30, 20, 20])\n",
|
|
"\n",
|
|
"print(ht(weights_and, np.array([1, 1, 1])))\n",
|
|
"print(ht(weights_and, np.array([1, 0, 1])))\n",
|
|
"print(ht(weights_and, np.array([1, 0, 0])))\n",
|
|
"print(ht(weights_and, np.array([1, 1, 0])))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"9.357622968839314e-14\n",
|
|
"4.539786870243442e-05\n",
|
|
"0.9999546021312976\n",
|
|
"4.539786870243442e-05\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# not x and not y gate?\n",
|
|
"weights = np.array([10, -20, -20])\n",
|
|
"\n",
|
|
"print(ht(weights, np.array([1, 1, 1])))\n",
|
|
"print(ht(weights, np.array([1, 0, 1])))\n",
|
|
"print(ht(weights, np.array([1, 0, 0])))\n",
|
|
"print(ht(weights, np.array([1, 1, 0])))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.9999999999999065\n",
|
|
"0.9999546021312976\n",
|
|
"4.539786870243442e-05\n",
|
|
"0.9999546021312976\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# or gate?\n",
|
|
"weights = np.array([-10, 20, 20])\n",
|
|
"print(ht(weights, np.array([1, 1, 1])))\n",
|
|
"print(ht(weights, np.array([1, 0, 1])))\n",
|
|
"print(ht(weights, np.array([1, 0, 0])))\n",
|
|
"print(ht(weights, np.array([1, 1, 0])))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 44,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# make it more generic\n",
|
|
"def layer(a: array, w: array, debug=False) -> array:\n",
|
|
" a_with_one: array = np.concatenate(([1], a))\n",
|
|
" z = w @ a_with_one\n",
|
|
" a_next = sigmoid(z)\n",
|
|
"\n",
|
|
" return a_next"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.9999999999999656\n",
|
|
"0.999983298578152\n",
|
|
"0.0001233945759862318\n",
|
|
"0.999983298578152\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# or gate but cooler\n",
|
|
"weights = np.array([1, -10, 20, 20])\n",
|
|
"print(layer(np.array([1, 1, 1]), weights))\n",
|
|
"print(layer(np.array([1, 0, 1]), weights))\n",
|
|
"print(layer(np.array([1, 0, 0]), weights))\n",
|
|
"print(layer(np.array([1, 1, 0]), weights))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 58,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.9999545869652744\n",
|
|
"4.5622486386054965e-05\n",
|
|
"4.5622486386054965e-05\n",
|
|
"0.9999545869652744\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# xnor gate, needs 3 layers\n",
|
|
"weights = [\n",
|
|
" np.array(\n",
|
|
" [\n",
|
|
" [1, -30, 20, 20],\n",
|
|
" [1, 10, -20, -20],\n",
|
|
" ]\n",
|
|
" ),\n",
|
|
" np.array([-10, 20, 20]),\n",
|
|
"]\n",
|
|
"\n",
|
|
"def l2(x: array, w1: array, w2: array) -> array:\n",
|
|
" z = layer(x, w1)\n",
|
|
" z2 = layer(z, w2)\n",
|
|
" return z2\n",
|
|
"\n",
|
|
"print(l2(np.array([1,0,0]), weights[0], weights[1]))\n",
|
|
"print(l2(np.array([1,1,0]), weights[0], weights[1]))\n",
|
|
"print(l2(np.array([1,0,1]), weights[0], weights[1]))\n",
|
|
"print(l2(np.array([1,1,1]), weights[0], weights[1]))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "ki",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|