{ "cells": [ { "cell_type": "markdown", "id": "f19ad4d1", "metadata": {}, "source": [ "# Lineare Regression mit scikit-learn" ] }, { "cell_type": "code", "execution_count": 1, "id": "fca110ae", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "# plotting settings\n", "pd.plotting.register_matplotlib_converters()\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "from sklearn.linear_model import LinearRegression" ] }, { "cell_type": "code", "execution_count": 2, "id": "6edf6b65", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | BuildingArea | \n", "Rooms | \n", "Price | \n", "
---|---|---|---|
1 | \n", "79.0 | \n", "2 | \n", "1035000.0 | \n", "
2 | \n", "150.0 | \n", "3 | \n", "1465000.0 | \n", "
4 | \n", "142.0 | \n", "4 | \n", "1600000.0 | \n", "
6 | \n", "210.0 | \n", "3 | \n", "1876000.0 | \n", "
7 | \n", "107.0 | \n", "2 | \n", "1636000.0 | \n", "