{ "cells": [ { "cell_type": "code", "execution_count": 23, "id": "0c067959-88f2-4579-ba5f-b4fe8a3b81fe", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "# plotting settings\n", "pd.plotting.register_matplotlib_converters()\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "import sklearn\n", "from sklearn.linear_model import LinearRegression,Ridge\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.preprocessing import StandardScaler, PolynomialFeatures" ] }, { "cell_type": "code", "execution_count": 4, "id": "f068fcd9-6023-4f40-87fe-3323ef241ab1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | BuildingArea | \n", "Rooms | \n", "Price | \n", "
---|---|---|---|
1 | \n", "79.0 | \n", "2 | \n", "1035000.0 | \n", "
2 | \n", "150.0 | \n", "3 | \n", "1465000.0 | \n", "
4 | \n", "142.0 | \n", "4 | \n", "1600000.0 | \n", "
6 | \n", "210.0 | \n", "3 | \n", "1876000.0 | \n", "
7 | \n", "107.0 | \n", "2 | \n", "1636000.0 | \n", "
PolynomialFeatures(degree=4)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
PolynomialFeatures(degree=4)
Pipeline(steps=[('polynomialfeatures',\n", " PolynomialFeatures(degree=4, include_bias=False)),\n", " ('standardscaler', StandardScaler()),\n", " ('linearregression', LinearRegression())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('polynomialfeatures',\n", " PolynomialFeatures(degree=4, include_bias=False)),\n", " ('standardscaler', StandardScaler()),\n", " ('linearregression', LinearRegression())])
PolynomialFeatures(degree=4, include_bias=False)
StandardScaler()
LinearRegression()