initial commit
This commit is contained in:
commit
f2700f523e
11 changed files with 19130 additions and 0 deletions
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
||||||
|
notebooks/.ipynb_checkpoints
|
1
.python-version
Normal file
1
.python-version
Normal file
|
@ -0,0 +1 @@
|
||||||
|
ki
|
21
data/exam-iq.csv
Normal file
21
data/exam-iq.csv
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
Pass,Hours,IQ
|
||||||
|
0,0.50,110
|
||||||
|
0,0.75,95
|
||||||
|
0,1.00,118
|
||||||
|
0,1.25,97
|
||||||
|
0,1.50,100
|
||||||
|
0,1.75,110
|
||||||
|
0,1.75,115
|
||||||
|
1,2.00,104
|
||||||
|
1,2.25,120
|
||||||
|
0,2.50,98
|
||||||
|
1,2.75,118
|
||||||
|
0,3.00,88
|
||||||
|
1,3.25,108
|
||||||
|
1,4.00,109
|
||||||
|
1,4.25,110
|
||||||
|
1,4.50,112
|
||||||
|
1,4.75,97
|
||||||
|
1,5.00,102
|
||||||
|
1,5.50,109
|
||||||
|
0,3.50,125
|
|
4239
data/framingham.csv
Normal file
4239
data/framingham.csv
Normal file
File diff suppressed because it is too large
Load diff
13581
data/melb_data.csv
Normal file
13581
data/melb_data.csv
Normal file
File diff suppressed because it is too large
Load diff
1238
notebooks/00 - Python Kurzeinführung.ipynb
Normal file
1238
notebooks/00 - Python Kurzeinführung.ipynb
Normal file
File diff suppressed because one or more lines are too long
1
notebooks/data
Symbolic link
1
notebooks/data
Symbolic link
|
@ -0,0 +1 @@
|
||||||
|
../data
|
4
pyrightconfig.json
Normal file
4
pyrightconfig.json
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
{
|
||||||
|
"venvPath": "/home/plex/.pyenv/versions",
|
||||||
|
"venv": "ki"
|
||||||
|
}
|
0
requirements.txt
Normal file
0
requirements.txt
Normal file
33
tasks/01-melbourne.py
Normal file
33
tasks/01-melbourne.py
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
from telnetlib import BM
|
||||||
|
# %% Imports
|
||||||
|
# imports überall im Code möglich, aber die Konvention ist alle benötigten import statements
|
||||||
|
# gleich zu Beginn einer Datei zu machen
|
||||||
|
|
||||||
|
# numpy ist ein Python-Modul für Numerik, das sowohl Funktionalität als auch Effizienz bietet
|
||||||
|
import numpy as np
|
||||||
|
# pandas ist sehr gut zum Arbeiten mit tabellarischen Daten, egal ob csv, xls oder xlsx
|
||||||
|
import pandas as pd
|
||||||
|
# plotting settings
|
||||||
|
pd.plotting.register_matplotlib_converters()
|
||||||
|
# matplotlib ist ein sehr umfangreiches Modul zum Erstellen von Visualisierungen/Plots
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
%matplotlib inline
|
||||||
|
# seaborn erleichtert das Erstellen von oft verwendeten Plot-Typen;
|
||||||
|
# es basiert selbst auf matplotlib und man kann beides kombinieren
|
||||||
|
# eine schöne Einführung in Seaborn: https://www.kaggle.com/learn/data-visualization
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
|
||||||
|
# %% Data
|
||||||
|
data = pd.read_csv("../data/melb_data.csv").dropna()
|
||||||
|
# Ein Outlier, blöder Arsch
|
||||||
|
ax = sns.scatterplot(x=data['BuildingArea'], y=data['Price'])
|
||||||
|
ax.set(xlim=(0, 1000))
|
||||||
|
|
||||||
|
|
||||||
|
# %% linear regression
|
||||||
|
X = data['BuildingArea']
|
||||||
|
Y = data['Price']
|
||||||
|
# aber das ist noch nicht die fertige eingabe, da fehlt die konstante 1!
|
||||||
|
# und mit Y ist auch irgendwas :(
|
||||||
|
# w_ana = np.linalg.solve(X.T @ X , X.T @ Y)
|
11
test.py
Normal file
11
test.py
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
# %% Cell
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# %% Cell
|
||||||
|
bla = np.arctan(55)
|
||||||
|
print(bla)
|
||||||
|
|
||||||
|
# %% Cell
|
||||||
|
bla = 19
|
||||||
|
print("penis")
|
||||||
|
print(bla)
|
Loading…
Add table
Reference in a new issue